» Articles » PMID: 18047570

Co-ordinated Regulation of Gluconate Catabolism and Glucose Uptake in Corynebacterium Glutamicum by Two Functionally Equivalent Transcriptional Regulators, GntR1 and GntR2

Overview
Journal Mol Microbiol
Date 2007 Dec 1
PMID 18047570
Citations 71
Authors
Affiliations
Soon will be listed here.
Abstract

Corynebacterium glutamicum is a Gram-positive soil bacterium that prefers the simultaneous catabolism of different carbon sources rather than their sequential utilization. This type of metabolism requires an adaptation of the utilization rates to the overall metabolic capacity. Here we show how two functionally redundant GntR-type transcriptional regulators, designated GntR1 and GntR2, co-ordinately regulate gluconate catabolism and glucose uptake. GntR1 and GntR2 strongly repress the genes encoding gluconate permease (gntP), gluconate kinase (gntK), and 6-phosphogluconate dehydrogenase (gnd) and weakly the pentose phosphate pathway genes organized in the tkt-tal-zwf-opcA-devB cluster. In contrast, ptsG encoding the EII(Glc) permease of the glucose phosphotransferase system (PTS) is activated by GntR1 and GntR2. Gluconate and glucono-delta-lactone interfere with binding of GntR1 and GntR2 to their target promoters, leading to a derepression of the genes involved in gluconate catabolism and reduced ptsG expression. To our knowledge, this is the first example for gluconate-dependent transcriptional control of PTS genes. A mutant lacking both gntR1 and gntR2 shows a 60% lower glucose uptake rate and growth rate than the wild type when cultivated on glucose as sole carbon source. This growth defect can be complemented by plasmid-encoded GntR1 or GntR2.

Citing Articles

Developing a High-Umami, Low-Salt Soy Sauce through Accelerated Moromi Fermentation with and Strains.

Wang L, Qu W, Xu Y, Xia S, Xue Q, Jiang X Foods. 2024; 13(9).

PMID: 38731757 PMC: 11083161. DOI: 10.3390/foods13091386.


Fruit residues as substrates for single-cell oil production by Rhodococcus species: physiology and genomics of carbohydrate catabolism.

Herrero O, Alvarez H World J Microbiol Biotechnol. 2024; 40(2):61.

PMID: 38177966 DOI: 10.1007/s11274-023-03866-z.


Eukaryotic-like gephyrin and cognate membrane receptor coordinate corynebacterial cell division and polar elongation.

Martinez M, Petit J, Leyva A, Sogues A, Megrian D, Rodriguez A Nat Microbiol. 2023; 8(10):1896-1910.

PMID: 37679597 PMC: 10522489. DOI: 10.1038/s41564-023-01473-0.


Sustainable and high-level microbial production of plant hemoglobin in Corynebacterium glutamicum.

Wang M, Shi Z, Gao N, Zhou Y, Ni X, Chen J Biotechnol Biofuels Bioprod. 2023; 16(1):80.

PMID: 37170167 PMC: 10176901. DOI: 10.1186/s13068-023-02337-9.


Eukaryotic-like gephyrin and cognate membrane receptor coordinate corynebacterial cell division and polar elongation.

Martinez M, Petit J, Leyva A, Sogues A, Megrian D, Rodriguez A bioRxiv. 2023; .

PMID: 36778425 PMC: 9915583. DOI: 10.1101/2023.02.01.526586.


References
1.
Peekhaus N, Conway T . Positive and negative transcriptional regulation of the Escherichia coli gluconate regulon gene gntT by GntR and the cyclic AMP (cAMP)-cAMP receptor protein complex. J Bacteriol. 1998; 180(7):1777-85. PMC: 107090. DOI: 10.1128/JB.180.7.1777-1785.1998. View

2.
Fujita Y, Miwa Y . Identification of an operator sequence for the Bacillus subtilis gnt operon. J Biol Chem. 1989; 264(7):4201-6. View

3.
Letek M, Valbuena N, Ramos A, Ordonez E, Gil J, Mateos L . Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J Bacteriol. 2005; 188(2):409-23. PMC: 1347311. DOI: 10.1128/JB.188.2.409-423.2006. View

4.
Tong S, Porco A, Isturiz T, Conway T . Cloning and molecular genetic characterization of the Escherichia coli gntR, gntK, and gntU genes of GntI, the main system for gluconate metabolism. J Bacteriol. 1996; 178(11):3260-9. PMC: 178079. DOI: 10.1128/jb.178.11.3260-3269.1996. View

5.
Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, Sugimoto S . Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res. 2003; 13(7):1572-9. PMC: 403753. DOI: 10.1101/gr.1285603. View