» Articles » PMID: 30740560

Plant Phylogenomics Based on Genome-partitioning Strategies: Progress and Prospects

Overview
Journal Plant Divers
Specialty Biology
Date 2019 Feb 12
PMID 30740560
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

The rapid expansion of next-generation sequencing (NGS) has generated a powerful array of approaches to address fundamental questions in biology. Several genome-partitioning strategies to sequence selected subsets of the genome have emerged in the fields of phylogenomics and evolutionary genomics. In this review, we summarize the applications, advantages and limitations of four NGS-based genome-partitioning approaches in plant phylogenomics: genome skimming, transcriptome sequencing (RNA-seq), restriction site associated DNA sequencing (RAD-Seq), and targeted capture (Hyb-seq). Of these four genome-partitioning approaches, targeted capture (especially Hyb-seq) shows the greatest promise for plant phylogenetics over the next few years. This review will aid researchers in their selection of appropriate genome-partitioning approaches to address questions of evolutionary scale, where we anticipate continued development and expansion of whole-genome sequencing strategies in the fields of plant phylogenomics and evolutionary biology research.

Citing Articles

Skmer approach improves species discrimination in taxonomically problematic genus (Theaceae).

Duan H, Jiang Y, Yang J, Cai J, Zhao J, Li L Plant Divers. 2025; 46(6):713-722.

PMID: 39811811 PMC: 11726044. DOI: 10.1016/j.pld.2024.06.003.


Genetic Determination of a Cryptic Species in the Genus With Whole-Genome Molecular Resolution.

Xu J, Wang J, Dong Y Ecol Evol. 2024; 14(12):e70715.

PMID: 39664716 PMC: 11631568. DOI: 10.1002/ece3.70715.


Relationships within Species Complex Using RAD Sequencing.

Nie L, Fang Y, Xia Z, Wei X, Wu Z, Yan Y Plants (Basel). 2024; 13(14).

PMID: 39065514 PMC: 11280518. DOI: 10.3390/plants13141987.


The first complete chloroplast genome of : insights into phylogeny and species identification.

Chen S, Safiul Azam F, Akter M, Ao L, Zou Y, Qian Y Front Plant Sci. 2024; 15:1356912.

PMID: 38745930 PMC: 11092384. DOI: 10.3389/fpls.2024.1356912.


Plant genome information facilitates plant functional genomics.

Bernal-Gallardo J, de Folter S Planta. 2024; 259(5):117.

PMID: 38592421 PMC: 11004055. DOI: 10.1007/s00425-024-04397-z.


References
1.
Martin W, Deusch O, Stawski N, Grunheit N, Goremykin V . Chloroplast genome phylogenetics: why we need independent approaches to plant molecular evolution. Trends Plant Sci. 2005; 10(5):203-9. DOI: 10.1016/j.tplants.2005.03.007. View

2.
Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T . The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 1986; 5(9):2043-2049. PMC: 1167080. DOI: 10.1002/j.1460-2075.1986.tb04464.x. View

3.
Mirarab S, Bayzid M, Boussau B, Warnow T . Statistical binning enables an accurate coalescent-based estimation of the avian tree. Science. 2014; 346(6215):1250463. DOI: 10.1126/science.1250463. View

4.
Henning F, Lee H, Franchini P, Meyer A . Genetic mapping of horizontal stripes in Lake Victoria cichlid fishes: benefits and pitfalls of using RAD markers for dense linkage mapping. Mol Ecol. 2014; 23(21):5224-40. DOI: 10.1111/mec.12860. View

5.
Hedtke S, Morgan M, Cannatella D, Hillis D . Targeted enrichment: maximizing orthologous gene comparisons across deep evolutionary time. PLoS One. 2013; 8(7):e67908. PMC: 3699465. DOI: 10.1371/journal.pone.0067908. View