» Articles » PMID: 30735128

Parallel Pathways for Sound Processing and Functional Connectivity Among Layer 5 and 6 Auditory Corticofugal Neurons

Overview
Journal Elife
Specialty Biology
Date 2019 Feb 9
PMID 30735128
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

Cortical layers (L) 5 and 6 are populated by intermingled cell-types with distinct inputs and downstream targets. Here, we made optogenetically guided recordings from L5 corticofugal (CF) and L6 corticothalamic (CT) neurons in the auditory cortex of awake mice to discern differences in sensory processing and underlying patterns of functional connectivity. Whereas L5 CF neurons showed broad stimulus selectivity with sluggish response latencies and extended temporal non-linearities, L6 CTs exhibited sparse selectivity and rapid temporal processing. L5 CF spikes lagged behind neighboring units and imposed weak feedforward excitation within the local column. By contrast, L6 CT spikes drove robust and sustained activity, particularly in local fast-spiking interneurons. Our findings underscore a duality among sub-cortical projection neurons, where L5 CF units are canonical broadcast neurons that integrate sensory inputs for transmission to distributed downstream targets, while L6 CT neurons are positioned to regulate thalamocortical response gain and selectivity.

Citing Articles

FOXP2-immunoreactive corticothalamic neurons in neocortical layers 6a and 6b are tightly regulated by neuromodulatory systems.

Qi G, Yang D, Messore F, Bast A, Yanez F, Oberlaender M iScience. 2025; 28(1):111646.

PMID: 39868047 PMC: 11758397. DOI: 10.1016/j.isci.2024.111646.


Noncanonical Short-Latency Auditory Pathway Directly Activates Deep Cortical Layers.

Garcia M, Kline A, Onodera K, Tsukano H, Dandu P, Acosta H bioRxiv. 2025; .

PMID: 39829930 PMC: 11741258. DOI: 10.1101/2025.01.06.631598.


Neural Correlates of Perceptual Plasticity in the Auditory Midbrain and Thalamus.

Ying R, Stolzberg D, Caras M J Neurosci. 2025; 45(10).

PMID: 39753303 PMC: 11884394. DOI: 10.1523/JNEUROSCI.0691-24.2024.


Convolutional neural network models describe the encoding subspace of local circuits in auditory cortex.

Wingert J, Parida S, Norman-Haignere S, David S bioRxiv. 2024; .

PMID: 39574636 PMC: 11581007. DOI: 10.1101/2024.11.07.622384.


Cell-type-specific enhancement of deviance detection by synaptic zinc in the mouse auditory cortex.

McCollum M, Manning A, Bender P, Mendelson B, Anderson C Proc Natl Acad Sci U S A. 2024; 121(40):e2405615121.

PMID: 39312661 PMC: 11459170. DOI: 10.1073/pnas.2405615121.


References
1.
Rockland K . Convergence and branching patterns of round, type 2 corticopulvinar axons. J Comp Neurol. 1998; 390(4):515-36. DOI: 10.1002/(sici)1096-9861(19980126)390:4<515::aid-cne5>3.0.co;2-3. View

2.
Bourassa J, Pinault D, Deschenes M . Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single-fibre study using biocytin as an anterograde tracer. Eur J Neurosci. 1995; 7(1):19-30. DOI: 10.1111/j.1460-9568.1995.tb01016.x. View

3.
Yu Y, Xiong Y, Chan Y, He J . Corticofugal gating of auditory information in the thalamus: an in vivo intracellular recording study. J Neurosci. 2004; 24(12):3060-9. PMC: 6729842. DOI: 10.1523/JNEUROSCI.4897-03.2004. View

4.
Bajo V, Rouiller E, Welker E, Clarke S, Villa A, De Ribaupierre Y . Morphology and spatial distribution of corticothalamic terminals originating from the cat auditory cortex. Hear Res. 1995; 83(1-2):161-74. DOI: 10.1016/0378-5955(94)00199-z. View

5.
Sherman S, Guillery R . Distinct functions for direct and transthalamic corticocortical connections. J Neurophysiol. 2011; 106(3):1068-77. DOI: 10.1152/jn.00429.2011. View