» Articles » PMID: 30710082

Capturing Chemical Intuition in Synthesis of Metal-organic Frameworks

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Feb 3
PMID 30710082
Citations 40
Authors
Affiliations
Soon will be listed here.
Abstract

We report a methodology using machine learning to capture chemical intuition from a set of (partially) failed attempts to synthesize a metal-organic framework. We define chemical intuition as the collection of unwritten guidelines used by synthetic chemists to find the right synthesis conditions. As (partially) failed experiments usually remain unreported, we have reconstructed a typical track of failed experiments in a successful search for finding the optimal synthesis conditions that yields HKUST-1 with the highest surface area reported to date. We illustrate the importance of quantifying this chemical intuition for the synthesis of novel materials.

Citing Articles

Adaptive representation of molecules and materials in Bayesian optimization.

Rajabi-Kochi M, Mahboubi N, Gill A, Moosavi S Chem Sci. 2025; .

PMID: 40012689 PMC: 11851078. DOI: 10.1039/d5sc00200a.


From Data to Discovery: Recent Trends of Machine Learning in Metal-Organic Frameworks.

Park J, Kim H, Kang Y, Lim Y, Kim J JACS Au. 2024; 4(10):3727-3743.

PMID: 39483241 PMC: 11522899. DOI: 10.1021/jacsau.4c00618.


Illuminating 'the ugly side of science': fresh incentives for reporting negative results.

Brazil R Nature. 2024; .

PMID: 39174776 DOI: 10.1038/d41586-024-01389-7.


Self-Driving Laboratories for Chemistry and Materials Science.

Tom G, Schmid S, Baird S, Cao Y, Darvish K, Hao H Chem Rev. 2024; 124(16):9633-9732.

PMID: 39137296 PMC: 11363023. DOI: 10.1021/acs.chemrev.4c00055.


Unified Roadmap for ZIF-8 Nucleation and Growth: Machine Learning Analysis of Synthetic Variables and Their Impact on Particle Size and Morphology.

Allegretto J, Onna D, Bilmes S, Azzaroni O, Rafti M Chem Mater. 2024; 36(11):5814-5825.

PMID: 38883435 PMC: 11171283. DOI: 10.1021/acs.chemmater.4c01069.


References
1.
Moosavi S, Chidambaram A, Talirz L, Haranczyk M, Stylianou K, Smit B . Capturing chemical intuition in synthesis of metal-organic frameworks. Nat Commun. 2019; 10(1):539. PMC: 6358622. DOI: 10.1038/s41467-019-08483-9. View

2.
Stock N, Biswas S . Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev. 2011; 112(2):933-69. DOI: 10.1021/cr200304e. View

3.
Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, OKeeffe M . Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science. 2002; 295(5554):469-72. DOI: 10.1126/science.1067208. View

4.
Wei J, Duvenaud D, Aspuru-Guzik A . Neural Networks for the Prediction of Organic Chemistry Reactions. ACS Cent Sci. 2016; 2(10):725-732. PMC: 5084081. DOI: 10.1021/acscentsci.6b00219. View

5.
Raccuglia P, Elbert K, Adler P, Falk C, Wenny M, Mollo A . Machine-learning-assisted materials discovery using failed experiments. Nature. 2016; 533(7601):73-6. DOI: 10.1038/nature17439. View