Zeng Z, Guo J, Jin J, Luo X
J Cheminform. 2025; 17(1):2.
PMID: 39773344
PMC: 11707929.
DOI: 10.1186/s13321-024-00944-8.
Zhao P, Wei X, Wang Q, Wang H, Du B, Li J
Interdiscip Sci. 2025; .
PMID: 39760923
DOI: 10.1007/s12539-024-00681-4.
Macorano A, Mazzolari A, Malloci G, Pedretti A, Vistoli G, Gervasoni S
Sci Data. 2024; 11(1):929.
PMID: 39191771
PMC: 11349763.
DOI: 10.1038/s41597-024-03707-0.
Groff L, Williams A, Shah I, Patlewicz G
Chem Res Toxicol. 2024; 37(5):685-697.
PMID: 38598715
PMC: 11325951.
DOI: 10.1021/acs.chemrestox.3c00398.
Wang T, Li Z, Zhuo L, Chen Y, Fu X, Zou Q
Brief Bioinform. 2024; 25(3).
PMID: 38555479
PMC: 10981768.
DOI: 10.1093/bib/bbae127.
An explainability framework for deep learning on chemical reactions exemplified by enzyme-catalysed reaction classification.
Probst D
J Cheminform. 2023; 15(1):113.
PMID: 37996942
PMC: 10668483.
DOI: 10.1186/s13321-023-00784-y.
Identification of Xenobiotic Biotransformation Products Using Mass Spectrometry-Based Metabolomics Integrated with a Structural Elucidation Strategy by Assembling Fragment Signatures.
Chen Y, Wu H, Wu W, Hsu J, Chang C, Lee Y
Anal Chem. 2023; 95(38):14279-14287.
PMID: 37713273
PMC: 10538286.
DOI: 10.1021/acs.analchem.3c02419.
In Vitro and In Silico Analysis of the Anticancer Effects of Eurycomanone and Eurycomalactone from .
Yunos N, Wahab H, Al-Thiabat M, Sallehudin N, Jauri M
Plants (Basel). 2023; 12(15).
PMID: 37570981
PMC: 10421158.
DOI: 10.3390/plants12152827.
Comparison and summary of in silico prediction tools for CYP450-mediated drug metabolism.
Zhai J, Man V, Ji B, Cai L, Wang J
Drug Discov Today. 2023; 28(10):103728.
PMID: 37517604
PMC: 10543639.
DOI: 10.1016/j.drudis.2023.103728.
MetaSpot: A General Approach for Recognizing the Reactive Atoms Undergoing Metabolic Reactions Based on the MetaQSAR Database.
Mazzolari A, Perazzoni P, Sabato E, Lunghini F, Beccari A, Vistoli G
Int J Mol Sci. 2023; 24(13).
PMID: 37446241
PMC: 10341931.
DOI: 10.3390/ijms241311064.
Artificial Intelligence in Drug Metabolism and Excretion Prediction: Recent Advances, Challenges, and Future Perspectives.
Tran T, Tayara H, Chong K
Pharmaceutics. 2023; 15(4).
PMID: 37111744
PMC: 10143484.
DOI: 10.3390/pharmaceutics15041260.
A Review of and Its Component, Berberine, as an Antidiabetic and Antioxidant.
Purwaningsih I, Maksum I, Sumiarsa D, Sriwidodo S
Molecules. 2023; 28(3).
PMID: 36770960
PMC: 9919506.
DOI: 10.3390/molecules28031294.
Multitarget Potential of Phytochemicals from Traditional Medicinal Tree, (Roxb. ex DC.) Wight & Arnot as Potential Medicaments for Cardiovascular Disease: An In-Silico Approach.
Kumar V, Sharma N, Orfali R, Patel C, Alnajjar R, Saini R
Molecules. 2023; 28(3).
PMID: 36770716
PMC: 9920080.
DOI: 10.3390/molecules28031046.
Characterization of the metabolism of eupalinolide A and B by carboxylesterase and cytochrome P450 in human liver microsomes.
Li Y, Liu X, Li L, Zhang T, Gao Y, Zeng K
Front Pharmacol. 2023; 14:1093696.
PMID: 36762117
PMC: 9905117.
DOI: 10.3389/fphar.2023.1093696.
Computational Evaluation of Azadirachta indica-Derived Bioactive Compounds as Potential Inhibitors of NLRP3 in the Treatment of Alzheimer's Disease.
Ishabiyi F, Ogidi J, Olukade B, Amorha C, El-Sharkawy L, Okolo C
J Alzheimers Dis. 2023; 94(s1):S67-S85.
PMID: 36683510
PMC: 10473084.
DOI: 10.3233/JAD-221020.
Machine Learning in Drug Metabolism Study.
Sinha K, Ghosh J, Sil P
Curr Drug Metab. 2022; 23(13):1012-1026.
PMID: 36578255
DOI: 10.2174/1389200224666221227094144.
A Transversal Approach Combining In Silico, In Vitro and In Vivo Models to Describe the Metabolism of the Receptor Interacting Protein 1 Kinase Inhibitor Sibiriline.
Pelletier R, Gicquel T, Simoes Eugenio M, Ferron P, Morel I, Delehouze C
Pharmaceutics. 2022; 14(12).
PMID: 36559159
PMC: 9787481.
DOI: 10.3390/pharmaceutics14122665.
Pharmacokinetic Study and Metabolite Identification of 1-(3'-bromophenyl)-heliamine in Rats.
Xi R, Abdulla R, Zhang M, Sherzod Z, Ivanovna V, Habasi M
Pharmaceuticals (Basel). 2022; 15(12).
PMID: 36558934
PMC: 9781129.
DOI: 10.3390/ph15121483.
Use of innovative, cross-disciplinary in vitro, in silico and in vivo approaches to characterize the metabolism of chloro-alpha-pyrrolidinovalerophenone (4-Cl-PVP).
Pelletier R, Le Dare B, Ferron P, Le Bouedec D, Kernalleguen A, Morel I
Arch Toxicol. 2022; 97(3):671-683.
PMID: 36469093
DOI: 10.1007/s00204-022-03427-7.
Impact of Established and Emerging Software Tools on the Metabolite Identification Landscape.
Smith A, Lanevskij K, Sazonovas A, Harris J
Front Toxicol. 2022; 4:932445.
PMID: 35800176
PMC: 9253584.
DOI: 10.3389/ftox.2022.932445.