6.
Raman K, Chandra N
. Flux balance analysis of biological systems: applications and challenges. Brief Bioinform. 2009; 10(4):435-49.
DOI: 10.1093/bib/bbp011.
View
7.
Yamanishi Y, Hattori M, Kotera M, Goto S, Kanehisa M
. E-zyme: predicting potential EC numbers from the chemical transformation pattern of substrate-product pairs. Bioinformatics. 2009; 25(12):i179-86.
PMC: 2687977.
DOI: 10.1093/bioinformatics/btp223.
View
8.
Wishart D, Li C, Marcu A, Badran H, Pon A, Budinski Z
. PathBank: a comprehensive pathway database for model organisms. Nucleic Acids Res. 2019; 48(D1):D470-D478.
PMC: 6943071.
DOI: 10.1093/nar/gkz861.
View
9.
Altschul S, Gish W, Miller W, Myers E, Lipman D
. Basic local alignment search tool. J Mol Biol. 1990; 215(3):403-10.
DOI: 10.1016/S0022-2836(05)80360-2.
View
10.
Dalkiran A, Rifaioglu A, Martin M, Cetin-Atalay R, Atalay V, Dogan T
. ECPred: a tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature. BMC Bioinformatics. 2018; 19(1):334.
PMC: 6150975.
DOI: 10.1186/s12859-018-2368-y.
View
11.
Tipton K, Boyce S
. History of the enzyme nomenclature system. Bioinformatics. 2000; 16(1):34-40.
DOI: 10.1093/bioinformatics/16.1.34.
View
12.
Ryu J, Kim H, Lee S
. Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers. Proc Natl Acad Sci U S A. 2019; 116(28):13996-14001.
PMC: 6628820.
DOI: 10.1073/pnas.1821905116.
View
13.
Herrgard M, Swainston N, Dobson P, Dunn W, Arga K, Arvas M
. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol. 2008; 26(10):1155-60.
PMC: 4018421.
DOI: 10.1038/nbt1492.
View
14.
Rahman S, Martinez Cuesta S, Furnham N, Holliday G, Thornton J
. EC-BLAST: a tool to automatically search and compare enzyme reactions. Nat Methods. 2014; 11(2):171-4.
PMC: 4122987.
DOI: 10.1038/nmeth.2803.
View
15.
Kroll A, Rousset Y, Hu X, Liebrand N, Lercher M
. Turnover number predictions for kinetically uncharacterized enzymes using machine and deep learning. Nat Commun. 2023; 14(1):4139.
PMC: 10338564.
DOI: 10.1038/s41467-023-39840-4.
View
16.
Schleinitz J, Langevin M, Smail Y, Wehnert B, Grimaud L, Vuilleumier R
. Machine Learning Yield Prediction from NiCOlit, a Small-Size Literature Data Set of Nickel Catalyzed C-O Couplings. J Am Chem Soc. 2022; 144(32):14722-14730.
DOI: 10.1021/jacs.2c05302.
View
17.
Matsuta Y, Ito M, Tohsato Y
. ECOH: an enzyme commission number predictor using mutual information and a support vector machine. Bioinformatics. 2012; 29(3):365-72.
DOI: 10.1093/bioinformatics/bts700.
View
18.
Kirchmair J, Williamson M, Tyzack J, Tan L, Bond P, Bender A
. Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms. J Chem Inf Model. 2012; 52(3):617-48.
PMC: 3317594.
DOI: 10.1021/ci200542m.
View
19.
Pundir S, Martin M, ODonovan C
. UniProt Tools. Curr Protoc Bioinformatics. 2016; 53:1.29.1-1.29.15.
PMC: 4941944.
DOI: 10.1002/0471250953.bi0129s53.
View
20.
McDonald A, Tipton K
. Enzyme nomenclature and classification: the state of the art. FEBS J. 2021; 290(9):2214-2231.
DOI: 10.1111/febs.16274.
View