Visible Light-Driven Self-Powered Device Based on a Straddling Nano-Heterojunction and Bio-Application for the Quantitation of Exosomal RNA
Overview
Affiliations
This paper reports the design and fabrication of a self-powered biosensing device based on TiO nanosilks (NSs)@MoS quantum dots (QDs) and demonstrates a bioapplication for the quantitative detection of exosomal RNA ( Homo sapiens HOXA distal transcript antisense RNA, HOTTIP). This self-powered device features enhanced power output compared to TiO NSs alone. This is attributed to the formation of a heterojunction structure with suitable band offset derived from the hybridization between TiO NSs and MoS QDs, i.e., the straddling (Type I) band alignment. The sensitization effect and excellent visible light absorption provided by MoS QDs can prolong interfacial carrier lifetime and improve energy conversion efficiency. This self-powered biosensing device has been successfully applied in quantitative HOTTIP detection through effective hybridization between a capture probe and HOTTIP. The successful capture of HOTTIP leads to a sequential decrease in power output, which is utilized for ultrasensitive quantitative HOTTIP detection, with a linear relationship of power output change versus the logarithm of HOTTIP concentration ranging from 5 fg/mL to 50 000 ng/mL and a detection limit as low as 5 fg/mL. This TiO NSs@MoS QDs-based nanomaterial has excellent potential for a superior self-powered device characterized by economical and portable self-powered biosensing. Moreover, this self-powered, visible-light-driven device shows promising applications for cancer biomarker quantitative detection.
Imaging-Assisted Antisense Oligonucleotide Delivery for Tumor-Targeted Gene Therapy.
Liao H, Wang S, Wang X, Dai D, Zhang Y, Zhu C Chem Biomed Imaging. 2024; 2(5):313-330.
PMID: 39474120 PMC: 11503958. DOI: 10.1021/cbmi.4c00012.
Pang X, Liu R, Lv X, Lu W, Sun L, Wang Q RSC Adv. 2024; 14(45):32883-32892.
PMID: 39429932 PMC: 11487473. DOI: 10.1039/d4ra05238b.
Nanomaterials for Molecular Detection and Analysis of Extracellular Vesicles.
Taylor M, Giacalone A, Amrhein K, Wilson Jr R, Wang Y, Huang X Nanomaterials (Basel). 2023; 13(3).
PMID: 36770486 PMC: 9920192. DOI: 10.3390/nano13030524.
Sun Z, Zhou Q, Yang Y, Li L, Yu M, Li H J Nanobiotechnology. 2022; 20(1):396.
PMID: 36045427 PMC: 9429728. DOI: 10.1186/s12951-022-01608-1.
Nanomaterials assisted exosomes isolation and analysis towards liquid biopsy.
Fang X, Wang Y, Wang S, Liu B Mater Today Bio. 2022; 16:100371.
PMID: 35937576 PMC: 9352971. DOI: 10.1016/j.mtbio.2022.100371.