» Articles » PMID: 30669275

Brain Organoids-A Bottom-Up Approach for Studying Human Neurodevelopment

Overview
Date 2019 Jan 24
PMID 30669275
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Brain organoids have recently emerged as a three-dimensional tissue culture platform to study the principles of neurodevelopment and morphogenesis. Importantly, brain organoids can be derived from human stem cells, and thus offer a model system for early human brain development and human specific disorders. However, there are still major differences between the in vitro systems and in vivo development. This is in part due to the challenge of engineering a suitable culture platform that will support proper development. In this review, we discuss the similarities and differences of human brain organoid systems in comparison to embryonic development. We then describe how organoids are used to model neurodevelopmental diseases. Finally, we describe challenges in organoid systems and how to approach these challenges using complementary bioengineering techniques.

Citing Articles

Engineering human midbrain organoid microphysiological systems to model prenatal PFOS exposure.

Tian C, Cai H, Ao Z, Gu L, Li X, Niu V Sci Total Environ. 2024; 947:174478.

PMID: 38964381 PMC: 11404128. DOI: 10.1016/j.scitotenv.2024.174478.


Multiscale engineering of brain organoids for disease modeling.

Xu C, Alameri A, Leong W, Johnson E, Chen Z, Xu B Adv Drug Deliv Rev. 2024; 210:115344.

PMID: 38810702 PMC: 11265575. DOI: 10.1016/j.addr.2024.115344.


Engineering tools for quantifying and manipulating forces in epithelia.

Dow L, Parmar T, Marchetti M, Pruitt B Biophys Rev (Melville). 2024; 4(2):021303.

PMID: 38510344 PMC: 10903508. DOI: 10.1063/5.0142537.


Single-Cell and Spatial Analysis of Emergent Organoid Platforms.

Kumar A, Cai S, Allam M, Henderson S, Ozbeyler M, Saiontz L Methods Mol Biol. 2023; 2660:311-344.

PMID: 37191807 DOI: 10.1007/978-1-0716-3163-8_22.


Spatio-temporal dynamics enhance cellular diversity, neuronal function and further maturation of human cerebral organoids.

Saglam-Metiner P, Devamoglu U, Filiz Y, Akbari S, Beceren G, Goker B Commun Biol. 2023; 6(1):173.

PMID: 36788328 PMC: 9926461. DOI: 10.1038/s42003-023-04547-1.


References
1.
Chambers S, Fasano C, Papapetrou E, Tomishima M, Sadelain M, Studer L . Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009; 27(3):275-80. PMC: 2756723. DOI: 10.1038/nbt.1529. View

2.
Karzbrun E, Kshirsagar A, Cohen S, Hanna J, Reiner O . Human Brain Organoids on a Chip Reveal the Physics of Folding. Nat Phys. 2018; 14(5):515-522. PMC: 5947782. DOI: 10.1038/s41567-018-0046-7. View

3.
Rakic P . Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci. 2009; 10(10):724-35. PMC: 2913577. DOI: 10.1038/nrn2719. View

4.
Camp J, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Brauninger M . Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A. 2015; 112(51):15672-7. PMC: 4697386. DOI: 10.1073/pnas.1520760112. View

5.
Otani T, Marchetto M, Gage F, Simons B, Livesey F . 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size. Cell Stem Cell. 2016; 18(4):467-80. PMC: 4826446. DOI: 10.1016/j.stem.2016.03.003. View