» Articles » PMID: 30651536

Regulation of in Vivo Dynein Force Production by CDK5 and 14-3-3ε and KIAA0528

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Jan 18
PMID 30651536
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Single-molecule cytoplasmic dynein function is well understood, but there are major gaps in mechanistic understanding of cellular dynein regulation. We reported a mode of dynein regulation, force adaptation, where lipid droplets adapt to opposition to motion by increasing the duration and magnitude of force production, and found LIS1 and NudEL to be essential. Adaptation reflects increasing NudEL-LIS1 utilization; here, we hypothesize that such increasing utilization reflects CDK5-mediated NudEL phosphorylation, which increases the dynein-NudEL interaction, and makes force adaptation possible. We report that CDK5, 14-3-3ε, and CDK5 cofactor KIAA0528 together promote NudEL phosphorylation and are essential for force adaptation. By studying the process in COS-1 cells lacking Tau, we avoid confounding neuronal effects of CDK5 on microtubules. Finally, we extend this in vivo regulatory pathway to lysosomes and mitochondria. Ultimately, we show that dynein force adaptation can control the severity of lysosomal tug-of-wars among other intracellular transport functions involving high force.

Citing Articles

MARK2 phosphorylates KIF13A at a 14-3-3 binding site to polarize vesicular transport of transferrin receptor within dendrites.

Han Y, Li M, Zhao B, Wang H, Liu Y, Liu Z Proc Natl Acad Sci U S A. 2024; 121(20):e2316266121.

PMID: 38709923 PMC: 11098127. DOI: 10.1073/pnas.2316266121.


The meiotic LINC complex component KASH5 is an activating adaptor for cytoplasmic dynein.

Garner K, Salter A, Lau C, Gurusaran M, Villemant C, Granger E J Cell Biol. 2023; 222(5).

PMID: 36946995 PMC: 10071310. DOI: 10.1083/jcb.202204042.


Tau Protein as Therapeutic Target for Cancer? Focus on Glioblastoma.

Hedna R, Kovacic H, Pagano A, Peyrot V, Robin M, Devred F Cancers (Basel). 2022; 14(21).

PMID: 36358803 PMC: 9653627. DOI: 10.3390/cancers14215386.


Decreased anterograde transport coupled with sustained retrograde transport contributes to reduced axonal mitochondrial density in tauopathy neurons.

Sabui A, Biswas M, Somvanshi P, Kandagiri P, Gorla M, Mohammed F Front Mol Neurosci. 2022; 15:927195.

PMID: 36245925 PMC: 9561864. DOI: 10.3389/fnmol.2022.927195.


LIS1 and NDEL1 Regulate Axonal Trafficking of Mitochondria in Mature Neurons.

Pandey J, Shi L, Brebion R, Smith D Front Mol Neurosci. 2022; 15:841047.

PMID: 35465088 PMC: 9025594. DOI: 10.3389/fnmol.2022.841047.


References
1.
Noble W, Olm V, Takata K, Casey E, Mary O, Meyerson J . Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron. 2003; 38(4):555-65. DOI: 10.1016/s0896-6273(03)00259-9. View

2.
Shubeita G, Tran S, Xu J, Vershinin M, Cermelli S, Cotton S . Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell. 2008; 135(6):1098-107. PMC: 2768369. DOI: 10.1016/j.cell.2008.10.021. View

3.
Flaherty D, Soria J, Tomasiewicz H, Wood J . Phosphorylation of human tau protein by microtubule-associated kinases: GSK3beta and cdk5 are key participants. J Neurosci Res. 2000; 62(3):463-72. DOI: 10.1002/1097-4547(20001101)62:3<463::AID-JNR16>3.0.CO;2-7. View

4.
Gutierrez P, Ackermann B, Vershinin M, McKenney R . Differential effects of the dynein-regulatory factor Lissencephaly-1 on processive dynein-dynactin motility. J Biol Chem. 2017; 292(29):12245-12255. PMC: 5519373. DOI: 10.1074/jbc.M117.790048. View

5.
Huang J, Imamura T, Olefsky J . Insulin can regulate GLUT4 internalization by signaling to Rab5 and the motor protein dynein. Proc Natl Acad Sci U S A. 2001; 98(23):13084-9. PMC: 60828. DOI: 10.1073/pnas.241368698. View