» Articles » PMID: 30649431

A Guardian Residue Hinders Insertion of a Fapy•dGTP Analog by Modulating the Open-closed DNA Polymerase Transition

Overview
Specialty Biochemistry
Date 2019 Jan 17
PMID 30649431
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

4,6-Diamino-5-formamidopyrimidine (Fapy•dG) is an abundant form of oxidative DNA damage that is mutagenic and contributes to the pathogenesis of human disease. When Fapy•dG is in its nucleotide triphosphate form, Fapy•dGTP, it is inefficiently cleansed from the nucleotide pool by the responsible enzyme in Escherichia coli MutT and its mammalian homolog MTH1. Therefore, under oxidative stress conditions, Fapy•dGTP could become a pro-mutagenic substrate for insertion into the genome by DNA polymerases. Here, we evaluated insertion kinetics and high-resolution ternary complex crystal structures of a configurationally stable Fapy•dGTP analog, β-C-Fapy•dGTP, with DNA polymerase β. The crystallographic snapshots and kinetic data indicate that binding of β-C-Fapy•dGTP impedes enzyme closure, thus hindering insertion. The structures reveal that an active site residue, Asp276, positions β-C-Fapy•dGTP so that it distorts the geometry of critical catalytic atoms. Removal of this guardian side chain permits enzyme closure and increases the efficiency of β-C-Fapy•dG insertion opposite dC. These results highlight the stringent requirements necessary to achieve a closed DNA polymerase active site poised for efficient nucleotide incorporation and illustrate how DNA polymerase β has evolved to hinder Fapy•dGTP insertion.

Citing Articles

Biochemical and structural characterization of Fapy•dG replication by Human DNA polymerase β.

Gao S, Oden P, Ryan B, Yang H, Freudenthal B, Greenberg M Nucleic Acids Res. 2024; 52(9):5392-5405.

PMID: 38634780 PMC: 11109955. DOI: 10.1093/nar/gkae277.


Effects of Hance var. Cheng Flavonoids on Intestinal Barrier and Cognitive Function by Regulating Intestinal Microbiota.

Zhang Y, Pan J, Liu Y, Zhang X, Cheng K Foods. 2023; 12(8).

PMID: 37107477 PMC: 10137925. DOI: 10.3390/foods12081682.


Structural Dynamics of a Common Mutagenic Oxidative DNA Lesion in Duplex DNA and during DNA Replication.

Ryan B, Yang H, Bacurio J, Smith M, Basu A, Greenberg M J Am Chem Soc. 2022; 144(18):8054-8065.

PMID: 35499923 PMC: 9097547. DOI: 10.1021/jacs.2c00193.


Watching a double strand break repair polymerase insert a pro-mutagenic oxidized nucleotide.

Jamsen J, Sassa A, Shock D, Beard W, Wilson S Nat Commun. 2021; 12(1):2059.

PMID: 33824325 PMC: 8024293. DOI: 10.1038/s41467-021-21354-6.


Biomarkers of nucleic acid oxidation - A summary state-of-the-art.

Chao M, Evans M, Hu C, Ji Y, Moller P, Rossner P Redox Biol. 2021; 42:101872.

PMID: 33579665 PMC: 8113048. DOI: 10.1016/j.redox.2021.101872.


References
1.
Imoto S, Patro J, Jiang Y, Oka N, Greenberg M . Synthesis, DNA polymerase incorporation, and enzymatic phosphate hydrolysis of formamidopyrimidine nucleoside triphosphates. J Am Chem Soc. 2006; 128(45):14606-11. PMC: 1780028. DOI: 10.1021/ja065525r. View

2.
Freudenthal B, Beard W, Wilson S . New structural snapshots provide molecular insights into the mechanism of high fidelity DNA synthesis. DNA Repair (Amst). 2015; 32:3-9. PMC: 4522352. DOI: 10.1016/j.dnarep.2015.04.007. View

3.
Bailey S, Wing R, Steitz T . The structure of T. aquaticus DNA polymerase III is distinct from eukaryotic replicative DNA polymerases. Cell. 2006; 126(5):893-904. DOI: 10.1016/j.cell.2006.07.027. View

4.
Yang L, Beard W, Wilson S, Broyde S, Schlick T . Highly organized but pliant active site of DNA polymerase beta: compensatory mechanisms in mutant enzymes revealed by dynamics simulations and energy analyses. Biophys J. 2004; 86(6):3392-408. PMC: 1304247. DOI: 10.1529/biophysj.103.036012. View

5.
Gehrke T, Lischke U, Gasteiger K, Schneider S, Arnold S, Muller H . Unexpected non-Hoogsteen-based mutagenicity mechanism of FaPy-DNA lesions. Nat Chem Biol. 2013; 9(7):455-61. DOI: 10.1038/nchembio.1254. View