Use of a Design of Experiments Approach to Optimise Production of a Recombinant Antibody Fragment in the Periplasm of Escherichia Coli: Selection of Signal Peptide and Optimal Growth Conditions
Overview
Affiliations
Production of recombinant proteins such as antibody fragments in the periplasm of the bacterium Escherichia coli has a number of advantages, including the ability to form disulphide bonds, aiding correct folding, and the relative ease of release and subsequent capture and purification. In this study, we employed two N-terminal signal peptides, PelB and DsbA, to direct a recombinant scFv antibody (single-chain variable fragment), 13R4, to the periplasm via the Sec and SRP pathways respectively. A design of experiments (DoE) approach was used to optimise process conditions (temperature, inducer concentration and induction point) influencing bacterial physiology and the productivity, solubility and location of scFv. The DoE study indicated that titre and subcellular location of the scFv depend on the temperature and inducer concentration employed, and also revealed the superiority of the PelB signal peptide over the DsbA signal peptide in terms of scFv solubility and cell physiology. Baffled shake flasks were subsequently used to optimise scFv production at higher biomass concentrations. Conditions that minimised stress (low temperature) were shown to be beneficial to production of periplasmic scFv. This study highlights the importance of signal peptide selection and process optimisation for the production of scFv antibodies, and demonstrates the utility of DoE for selection of optimal process parameters.
McConnell S, Casadevall A J Biol Chem. 2024; 300(6):107397.
PMID: 38763332 PMC: 11215335. DOI: 10.1016/j.jbc.2024.107397.
Therapeutic proteins: developments, progress, challenges, and future perspectives.
Kumar V, Barwal A, Sharma N, Mir D, Kumar P, Kumar V 3 Biotech. 2024; 14(4):112.
PMID: 38510462 PMC: 10948735. DOI: 10.1007/s13205-024-03958-z.
Liang Q, Tu B, Cui L Appl Microbiol Biotechnol. 2024; 108(1):41.
PMID: 38180552 DOI: 10.1007/s00253-023-12939-w.
Optimisation of recombinant TNFα production in using GFP fusions and flow cytometry.
Zulkifly N, Selas Castineiras T, Overton T Front Bioeng Biotechnol. 2023; 11:1171823.
PMID: 37600304 PMC: 10433901. DOI: 10.3389/fbioe.2023.1171823.
Estabragh A, Mohammad Sadeghi H, Akbari V Adv Biomed Res. 2023; 11:117.
PMID: 36798911 PMC: 9926028. DOI: 10.4103/abr.abr_351_21.