» Articles » PMID: 30595438

Temperature-Responsive Competitive Inhibition of CRISPR-Cas9

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2019 Jan 1
PMID 30595438
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

CRISPR-Cas immune systems utilize RNA-guided nucleases to protect bacteria from bacteriophage infection. Bacteriophages have in turn evolved inhibitory "anti-CRISPR" (Acr) proteins, including six inhibitors (AcrIIA1-AcrIIA6) that can block DNA cutting and genome editing by type II-A CRISPR-Cas9 enzymes. We show here that AcrIIA2 and its more potent homolog, AcrIIA2b, prevent Cas9 binding to DNA by occluding protein residues required for DNA binding. Cryo-EM-determined structures of AcrIIA2 or AcrIIA2b bound to S. pyogenes Cas9 reveal a mode of competitive inhibition of DNA binding that is distinct from other known Acrs. Differences in the temperature dependence of Cas9 inhibition by AcrIIA2 and AcrIIA2b arise from differences in both inhibitor structure and the local inhibitor-binding environment on Cas9. These findings expand the natural toolbox for regulating CRISPR-Cas9 genome editing temporally, spatially, and conditionally.

Citing Articles

Current Updates of CRISPR/Cas System and Anti-CRISPR Proteins: Innovative Applications to Improve the Genome Editing Strategies.

Allemailem K, Almatroudi A, Alrumaihi F, Alradhi A, Theyab A, Algahtani M Int J Nanomedicine. 2024; 19:10185-10212.

PMID: 39399829 PMC: 11471075. DOI: 10.2147/IJN.S479068.


Inhibition mechanisms of CRISPR-Cas9 by AcrIIA25.1 and AcrIIA32.

Zheng J, Zhu Y, Huang T, Gao W, He J, Huang Z Sci China Life Sci. 2024; 67(9):1781-1791.

PMID: 38842649 DOI: 10.1007/s11427-024-2607-8.


An anti-CRISPR that represses its own transcription while blocking Cas9-target DNA binding.

Deng X, Sun W, Li X, Wang J, Cheng Z, Sheng G Nat Commun. 2024; 15(1):1806.

PMID: 38418450 PMC: 10901769. DOI: 10.1038/s41467-024-45987-5.


Conformational plasticity of SpyCas9 induced by AcrIIA4 and AcrIIA2: Insights from molecular dynamics simulation.

Wen S, Zhao Y, Qi X, Cai M, Huang K, Liu H Comput Struct Biotechnol J. 2024; 23:537-548.

PMID: 38235361 PMC: 10791570. DOI: 10.1016/j.csbj.2023.12.030.


Optimization of Cas9 activity through the addition of cytosine extensions to single-guide RNAs.

Kawamata M, Suzuki H, Kimura R, Suzuki A Nat Biomed Eng. 2023; 7(5):672-691.

PMID: 37037965 PMC: 10195680. DOI: 10.1038/s41551-023-01011-7.


References
1.
Rauch B, Silvis M, Hultquist J, Waters C, McGregor M, Krogan N . Inhibition of CRISPR-Cas9 with Bacteriophage Proteins. Cell. 2017; 168(1-2):150-158.e10. PMC: 5235966. DOI: 10.1016/j.cell.2016.12.009. View

2.
Tang G, Peng L, Baldwin P, Mann D, Jiang W, Rees I . EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol. 2006; 157(1):38-46. DOI: 10.1016/j.jsb.2006.05.009. View

3.
Koonin E, Makarova K, Zhang F . Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017; 37:67-78. PMC: 5776717. DOI: 10.1016/j.mib.2017.05.008. View

4.
Marraffini L, Sontheimer E . CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet. 2010; 11(3):181-90. PMC: 2928866. DOI: 10.1038/nrg2749. View

5.
Hynes A, Rousseau G, Agudelo D, Goulet A, Amigues B, Loehr J . Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins. Nat Commun. 2018; 9(1):2919. PMC: 6060171. DOI: 10.1038/s41467-018-05092-w. View