» Articles » PMID: 30570107

Potential CeRNA Networks Involved in Autophagy Suppression of Pancreatic Cancer Caused by Chloroquine Diphosphate: A Study Based on Differentially‑expressed CircRNAs, LncRNAs, MiRNAs and MRNAs

Overview
Journal Int J Oncol
Specialty Oncology
Date 2018 Dec 21
PMID 30570107
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

Autophagy has been reported to be involved in the occurrence and development of pancreatic cancer. However, the mechanism of autophagy‑associated non‑coding RNAs (ncRNAs) in pancreatic cancer remains largely unknown. In the present study, microarrays were used to detect differential expression of mRNAs, microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs) post autophagy suppression by chloroquine diphosphate in PANC‑1 cells. Collectively, 3,966 mRNAs, 3,184 lncRNAs and 9,420 circRNAs were differentially expressed. Additionally, only two miRNAs (hsa‑miR‑663a‑5p and hsa‑miR‑154‑3p) were underexpressed in the PANC‑1 cells in the autophagy‑suppression group. Furthermore, miR‑663a‑5p with 9 circRNAs, 8 lncRNAs and 46 genes could form a prospective ceRNA network associated with autophagy in pancreatic cancer cells. In addition, another ceRNA network containing miR‑154‑3p, 5 circRNAs, 2 lncRNAs and 11 genes was also constructed. The potential multiple ceRNA, miRNA and mRNA associations may serve pivotal roles in the autophagy of pancreatic cancer cells, which lays the theoretical foundation for subsequent investigations on pancreatic cancer.

Citing Articles

Autophagy and the pancreas: Healthy and disease states.

Zhou Z, Zhang P, Li J, Yao J, Jiang Y, Wan M Front Cell Dev Biol. 2024; 12:1460616.

PMID: 39381372 PMC: 11458389. DOI: 10.3389/fcell.2024.1460616.


Predicting miRNA-Disease Associations by Combining Graph and Hypergraph Convolutional Network.

Liang X, Guo M, Jiang L, Fu Y, Zhang P, Chen Y Interdiscip Sci. 2024; 16(2):289-303.

PMID: 38286905 DOI: 10.1007/s12539-023-00599-3.


The role of HIF in angiogenesis, lymphangiogenesis, and tumor microenvironment in urological cancers.

Lin S, Chai Y, Zheng X, Xu X Mol Biol Rep. 2023; 51(1):14.

PMID: 38085375 PMC: 10716070. DOI: 10.1007/s11033-023-08931-2.


Long Non-Coding RNAs and Metabolic Rewiring in Pancreatic Cancer.

Dalmasso B, Ghiorzo P Cancers (Basel). 2023; 15(13).

PMID: 37444595 PMC: 10340399. DOI: 10.3390/cancers15133486.


Autophagy-Related ncRNAs in Pancreatic Cancer.

Donati S, Aurilia C, Palmini G, Falsetti I, Iantomasi T, Brandi M Pharmaceuticals (Basel). 2022; 15(12).

PMID: 36558998 PMC: 9785627. DOI: 10.3390/ph15121547.


References
1.
Lovecek M, Skalicky P, Klos D, Bebarova L, Neoral C, Ehrmann J . Long-term survival after resections for pancreatic ductal adenocarcinoma. Single centre study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016; 160(2):280-6. DOI: 10.5507/bp.2016.011. View

2.
Gafar A, Draz H, Goldberg A, Bashandy M, Bakry S, Khalifa M . Lithocholic acid induces endoplasmic reticulum stress, autophagy and mitochondrial dysfunction in human prostate cancer cells. PeerJ. 2016; 4:e2445. PMC: 5119235. DOI: 10.7717/peerj.2445. View

3.
Chen S, Wu J, Jiao K, Wu Q, Ma J, Chen D . MicroRNA-495-3p inhibits multidrug resistance by modulating autophagy through GRP78/mTOR axis in gastric cancer. Cell Death Dis. 2018; 9(11):1070. PMC: 6195618. DOI: 10.1038/s41419-018-0950-x. View

4.
Krek A, Grun D, Poy M, Wolf R, Rosenberg L, Epstein E . Combinatorial microRNA target predictions. Nat Genet. 2005; 37(5):495-500. DOI: 10.1038/ng1536. View

5.
Klein K, Werner K, Teske C, Schenk M, Giese T, Weitz J . Role of TFEB-driven autophagy regulation in pancreatic cancer treatment. Int J Oncol. 2016; 49(1):164-72. DOI: 10.3892/ijo.2016.3505. View