» Articles » PMID: 30566125

Genetically Encoded RNA-based Sensors for Intracellular Imaging of Silver Ions

Overview
Specialty Chemistry
Date 2018 Dec 20
PMID 30566125
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Silver has been widely used for disinfection. The cellular accumulation of silver ions (Ag+) is critical in these antibacterial effects. The direct cellular measurement of Ag+ is useful for the study of disinfection mechanisms. Herein, we reported a novel genetically encoded RNA-based sensor to image Ag+ in live bacterial cells. The sensor is designed by introducing a cytosine-Ag+-cytosine metallo base pair into a fluorogenic RNA aptamer, Broccoli. The binding of Ag+ induces the folding of Broccoli and activates a fluorescence signal. This sensor can be genetically encoded to measure the cellular flux and antibacterial effect of Ag+.

Citing Articles

Fluorogenic RNA-Based Biosensors of Small Molecules: Current Developments, Uses, and Perspectives.

Kehrli J, Husser C, Ryckelynck M Biosensors (Basel). 2024; 14(8).

PMID: 39194605 PMC: 11352751. DOI: 10.3390/bios14080376.


Engineered aptamers for molecular imaging.

Lin B, Xiao F, Jiang J, Zhao Z, Zhou X Chem Sci. 2023; 14(48):14039-14061.

PMID: 38098720 PMC: 10718180. DOI: 10.1039/d3sc03989g.


A universal orthogonal imaging platform for living-cell RNA detection using fluorogenic RNA aptamers.

Yin P, Ge M, Xie S, Zhang L, Kuang S, Nie Z Chem Sci. 2023; 14(48):14131-14139.

PMID: 38098702 PMC: 10717586. DOI: 10.1039/d3sc04957d.


Genetically encoded RNA-based sensors with Pepper fluorogenic aptamer.

Chen Z, Chen W, Reheman Z, Jiang H, Wu J, Li X Nucleic Acids Res. 2023; 51(16):8322-8336.

PMID: 37486780 PMC: 10484673. DOI: 10.1093/nar/gkad620.


Genetically encoded fluorescent sensors for metals in biology.

Torres-Ocampo A, Palmer A Curr Opin Chem Biol. 2023; 74:102284.

PMID: 36917910 PMC: 10573084. DOI: 10.1016/j.cbpa.2023.102284.


References
1.
Yu S, Yin Y, Liu J . Silver nanoparticles in the environment. Environ Sci Process Impacts. 2014; 15(1):78-92. DOI: 10.1039/c2em30595j. View

2.
Cao H, Liu X . Silver nanoparticles-modified films versus biomedical device-associated infections. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010; 2(6):670-84. DOI: 10.1002/wnan.113. View

3.
Russell A, HUGO W . Antimicrobial activity and action of silver. Prog Med Chem. 1994; 31:351-70. DOI: 10.1016/s0079-6468(08)70024-9. View

4.
Reidy B, Haase A, Luch A, Dawson K, Lynch I . Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications. Materials (Basel). 2017; 6(6):2295-2350. PMC: 5458943. DOI: 10.3390/ma6062295. View

5.
Kellenberger C, Wilson S, Sales-Lee J, Hammond M . RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP. J Am Chem Soc. 2013; 135(13):4906-9. PMC: 3775879. DOI: 10.1021/ja311960g. View