» Articles » PMID: 30541966

Diversity of Structure and Function of GABA Receptors: a Complexity of GABA-mediated Signaling

Overview
Specialties Biology
Science
Date 2018 Dec 14
PMID 30541966
Citations 63
Authors
Affiliations
Soon will be listed here.
Abstract

γ-aminobutyric acid type B (GABA) receptors are broadly expressed in the nervous system and play an important role in neuronal excitability. GABA receptors are G protein-coupled receptors that mediate slow and prolonged inhibitory action, via activation of Gαi/o-type proteins. GABA receptors mediate their inhibitory action through activating inwardly rectifying K channels, inactivating voltage-gated Ca channels, and inhibiting adenylate cyclase. Functional GABA receptors are obligate heterodimers formed by the co-assembly of R1 and R2 subunits. It is well established that GABA receptors interact not only with G proteins and effectors but also with various proteins. This review summarizes the structure, subunit isoforms, and function of GABA receptors, and discusses the complexity of GABA receptors, including how receptors are localized in specific subcellular compartments, the mechanism regulating cell surface expression and mobility of the receptors, and the diversity of receptor signaling through receptor crosstalk and interacting proteins.

Citing Articles

AMPK as a Therapeutic Target: Advancing Epilepsy Management Through Metabolic Modulation.

Dhureja M, Munshi A, Kumar P Mol Neurobiol. 2025; .

PMID: 39937419 DOI: 10.1007/s12035-025-04745-4.


The E3 ubiquitin ligase MARCH1 mediates downregulation of plasma membrane GABA receptors under ischemic conditions by inhibiting fast receptor recycling.

Bhat M, Hleihil M, Mondejar I, Grampp T, Benke D Sci Rep. 2025; 15(1):1330.

PMID: 39779794 PMC: 11711762. DOI: 10.1038/s41598-025-85842-1.


Insights and progress on the biosynthesis, metabolism, and physiological functions of gamma-aminobutyric acid (GABA): a review.

Zhang Q, Zhu L, Li H, Chen Q, Li N, Li J PeerJ. 2024; 12:e18712.

PMID: 39703920 PMC: 11657192. DOI: 10.7717/peerj.18712.


GABA receptor π forms channels that stimulate ERK through a G-protein-dependent pathway.

Wang Y, Zhang Y, Li W, Salovska B, Zhang J, Li T Mol Cell. 2024; 85(1):166-176.e5.

PMID: 39642883 PMC: 11698630. DOI: 10.1016/j.molcel.2024.11.016.


Autoimmune encephalitis with coexisting antibodies to GABABR, GAD65, SOX1 and Ma2.

Li P, Yang T, Gu Y, Zhou J, Wang Z BMC Neurol. 2024; 24(1):441.

PMID: 39538282 PMC: 11559185. DOI: 10.1186/s12883-024-03938-z.


References
1.
Dewey S, BRODIE J, Gerasimov M, Horan B, Gardner E, Ashby Jr C . A pharmacologic strategy for the treatment of nicotine addiction. Synapse. 1999; 31(1):76-86. DOI: 10.1002/(SICI)1098-2396(199901)31:1<76::AID-SYN10>3.0.CO;2-Y. View

2.
Mitrovic I, Riley R, Jan L, Basbaum A . Immunohistochemical localization of GABA(B) receptors in the rat central nervous system. J Comp Neurol. 1999; 405(3):299-321. DOI: 10.1002/(sici)1096-9861(19990315)405:3<299::aid-cne2>3.0.co;2-6. View

3.
Simonds W . G protein regulation of adenylate cyclase. Trends Pharmacol Sci. 1999; 20(2):66-73. DOI: 10.1016/s0165-6147(99)01307-3. View

4.
Galvez T, Parmentier M, Joly C, Malitschek B, Kaupmann K, Kuhn R . Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. J Biol Chem. 1999; 274(19):13362-9. DOI: 10.1074/jbc.274.19.13362. View

5.
Bernasconi R, Mathivet P, Bischoff S, Marescaux C . Gamma-hydroxybutyric acid: an endogenous neuromodulator with abuse potential?. Trends Pharmacol Sci. 1999; 20(4):135-41. DOI: 10.1016/s0165-6147(99)01341-3. View