» Articles » PMID: 30541776

Contact Challenge of Cattle with Foot-and-Mouth Disease Virus Validates the Role of the Nasopharyngeal Epithelium As the Site of Primary and Persistent Infection

Overview
Journal mSphere
Date 2018 Dec 14
PMID 30541776
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

The pathogenesis of foot-and-mouth disease virus (FMDV) in cattle was investigated through early and late stages of infection by use of an optimized experimental model for controlled contact exposure. Time-limited exposure of cattle to FMDV-infected pigs led to primary FMDV infection of the nasopharyngeal mucosa in both vaccinated and nonvaccinated cattle. In nonvaccinated cattle, the infection generalized rapidly to cause clinical disease, without apparent virus amplification in the lungs prior to establishment of viremia. Vaccinated cattle were protected against clinical disease and viremia; however, all vaccinated cattle were subclinically infected, and persistent infection occurred at similarly high prevalences in both animal cohorts. Infection dynamics in cattle were consistent and synchronous and comparable to those of simulated natural and needle inoculation systems. However, the current experimental model utilizes a natural route of virus exposure and is therefore superior for investigations of disease pathogenesis and host response. Deep sequencing of viruses obtained during early infection of pigs and cattle indicated that virus populations sampled from sites of primary infection were markedly more diverse than viruses from vesicular lesions of cattle, suggesting the occurrence of substantial bottlenecks associated with vesicle formation. These data expand previous knowledge of FMDV pathogenesis in cattle and provide novel insights for validation of inoculation models of bovine FMD studies. Foot-and-mouth disease virus (FMDV) is an important livestock pathogen that is often described as the greatest constraint to global trade in animal products. The present study utilized a standardized pig-to-cow contact exposure model to demonstrate that FMDV infection of cattle initiates in the nasopharyngeal mucosa following natural virus exposure. Furthermore, this work confirmed the role of the bovine nasopharyngeal mucosa as the site of persistent FMDV infection in vaccinated and nonvaccinated cattle. The critical output of this study validates previous studies that have used simulated natural inoculation models to characterize FMDV pathogenesis in cattle and emphasizes the importance of continued research of the unique virus-host interactions that occur within the bovine nasopharynx. Specifically, vaccines and biotherapeutic countermeasures designed to prevent nasopharyngeal infection of vaccinated animals could contribute to substantially improved control of FMDV.

Citing Articles

Leaderless foot-and-mouth disease virus serotype O did not cause clinical disease and failed to establish a persistent infection in cattle.

Litz B, Sehl-Ewert J, Breithaupt A, Landmesser A, Pfaff F, Romey A Emerg Microbes Infect. 2024; 13(1):2348526.

PMID: 38683015 PMC: 11100440. DOI: 10.1080/22221751.2024.2348526.


Heterogeneity and Recombination of Foot-and-Mouth Disease Virus during Multi-Strain Coinfection of Cattle.

Stenfeldt C, Fish I, Meek H, Arzt J mSphere. 2023; 8(3):e0064322.

PMID: 37093054 PMC: 10286704. DOI: 10.1128/msphere.00643-22.


Local and systemic immune responses induced by intranasal immunization with biomineralized foot-and-mouth disease virus-like particles.

Li S, Zhao R, Song H, Pan S, Zhang Y, Dong H Front Microbiol. 2023; 14:1112641.

PMID: 36819011 PMC: 9937024. DOI: 10.3389/fmicb.2023.1112641.


Inferred Causal Mechanisms of Persistent FMDV Infection in Cattle from Differential Gene Expression in the Nasopharyngeal Mucosa.

Zhu J, Stenfeldt C, Bishop E, Canter J, Eschbaumer M, Rodriguez L Pathogens. 2022; 11(8).

PMID: 35894045 PMC: 9329776. DOI: 10.3390/pathogens11080822.


Genome Sequences of Foot-and-Mouth Disease Virus Serotype A and O Strains Obtained from Subclinically Infected Asian Buffalo in Pakistan.

Stenfeldt C, Bertram M, Holinka-Patterson L, Fish I, Farooq U, Ahmed Z Microbiol Resour Announc. 2022; 11(8):e0057522.

PMID: 35862920 PMC: 9387223. DOI: 10.1128/mra.00575-22.


References
1.
Sutmoller P, COTTRAL G . Improved techniques for the detection of foot-and-mouth disease virus in carrier cattle. Arch Gesamte Virusforsch. 1967; 21(2):170-7. DOI: 10.1007/BF01241441. View

2.
Stenfeldt C, Heegaard P, Stockmarr A, Tjornehoj K, Belsham G . Analysis of the acute phase responses of serum amyloid a, haptoglobin and type 1 interferon in cattle experimentally infected with foot-and-mouth disease virus serotype O. Vet Res. 2011; 42:66. PMC: 3123197. DOI: 10.1186/1297-9716-42-66. View

3.
Yang M, Clavijo A, Li M, Hole K, Holland H, Wang H . Identification of a major antibody binding epitope in the non-structural protein 3D of foot-and-mouth disease virus in cattle and the development of a monoclonal antibody with diagnostic applications. J Immunol Methods. 2007; 321(1-2):174-81. DOI: 10.1016/j.jim.2007.01.016. View

4.
Pacheco J, Mason P . Evaluation of infectivity and transmission of different Asian foot-and-mouth disease viruses in swine. J Vet Sci. 2010; 11(2):133-42. PMC: 2873813. DOI: 10.4142/jvs.2010.11.2.133. View

5.
Stenfeldt C, Eschbaumer M, Rekant S, Pacheco J, Smoliga G, Hartwig E . The Foot-and-Mouth Disease Carrier State Divergence in Cattle. J Virol. 2016; 90(14):6344-64. PMC: 4936139. DOI: 10.1128/JVI.00388-16. View