» Articles » PMID: 30509977

Structure and Activity of Lipid Bilayer Within a Membrane-protein Transporter

Overview
Specialty Science
Date 2018 Dec 5
PMID 30509977
Citations 74
Authors
Affiliations
Soon will be listed here.
Abstract

Membrane proteins function in native cell membranes, but extraction into isolated particles is needed for many biochemical and structural analyses. Commonly used detergent-extraction methods destroy naturally associated lipid bilayers. Here, we devised a detergent-free method for preparing cell-membrane nanoparticles to study the multidrug exporter AcrB, by cryo-EM at 3.2-Å resolution. We discovered a remarkably well-organized lipid-bilayer structure associated with transmembrane domains of the AcrB trimer. This bilayer patch comprises 24 lipid molecules; inner leaflet chains are packed in a hexagonal array, whereas the outer leaflet has highly irregular but ordered packing. Protein side chains interact with both leaflets and participate in the hexagonal pattern. We suggest that the lipid bilayer supports and harmonizes peristaltic motions through AcrB trimers. In AcrB D407A, a putative proton-relay mutant, lipid bilayer buttresses protein interactions lost in crystal structures after detergent-solubilization. Our detergent-free system preserves lipid-protein interactions for visualization and should be broadly applicable.

Citing Articles

Tunable Terpolymer Series for the Systematic Investigation of Membrane Proteins.

Kuyler G, Barnard E, Sridhar P, Murray R, Pollock N, Wheatley M Biomacromolecules. 2024; 26(1):415-427.

PMID: 39725644 PMC: 11733950. DOI: 10.1021/acs.biomac.4c01219.


A proteome-wide quantitative platform for nanoscale spatially resolved extraction of membrane proteins into native nanodiscs.

Brown C, Ghosh S, McAllister R, Kumar M, Walker G, Sun E Nat Methods. 2024; 22(2):412-421.

PMID: 39609567 PMC: 11810782. DOI: 10.1038/s41592-024-02517-x.


Crystallographic insights into lipid-membrane protein interactions in microbial rhodopsins.

Bukhdruker S, Melnikov I, Baeken C, Balandin T, Gordeliy V Front Mol Biosci. 2024; 11:1503709.

PMID: 39606035 PMC: 11599742. DOI: 10.3389/fmolb.2024.1503709.


On the Properties of Styrene-Maleic Acid Copolymer-Lipid Nanoparticles: A Solution NMR Perspective.

Motov V, Kot E, Kislova S, Bocharov E, Arseniev A, Boldyrev I Polymers (Basel). 2024; 16(21).

PMID: 39518219 PMC: 11548547. DOI: 10.3390/polym16213009.


Metallic nanoparticles: a promising novel therapeutic tool against antimicrobial resistance and spread of superbugs.

Tijani N, Hokello J, Eilu E, Akinola S, Afolabi A, Makeri D Biometals. 2024; 38(1):55-88.

PMID: 39446237 DOI: 10.1007/s10534-024-00647-5.


References
1.
Garavito R, Ferguson-Miller S . Detergents as tools in membrane biochemistry. J Biol Chem. 2001; 276(35):32403-6. DOI: 10.1074/jbc.R100031200. View

2.
Henderson R, Unwin P . Three-dimensional model of purple membrane obtained by electron microscopy. Nature. 1975; 257(5521):28-32. DOI: 10.1038/257028a0. View

3.
Murakami S, Nakashima R, Yamashita E, Yamaguchi A . Crystal structure of bacterial multidrug efflux transporter AcrB. Nature. 2002; 419(6907):587-93. DOI: 10.1038/nature01050. View

4.
Edidin M . Lipids on the frontier: a century of cell-membrane bilayers. Nat Rev Mol Cell Biol. 2003; 4(5):414-8. DOI: 10.1038/nrm1102. View

5.
Yu E, McDermott G, Zgurskaya H, Nikaido H, Koshland Jr D . Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science. 2003; 300(5621):976-80. DOI: 10.1126/science.1083137. View