» Articles » PMID: 30504848

The Phylogeography and Incidence of Multi-drug Resistant Typhoid Fever in Sub-Saharan Africa

Abstract

There is paucity of data regarding the geographical distribution, incidence, and phylogenetics of multi-drug resistant (MDR) Salmonella Typhi in sub-Saharan Africa. Here we present a phylogenetic reconstruction of whole genome sequenced 249 contemporaneous S. Typhi isolated between 2008-2015 in 11 sub-Saharan African countries, in context of the 2,057 global S. Typhi genomic framework. Despite the broad genetic diversity, the majority of organisms (225/249; 90%) belong to only three genotypes, 4.3.1 (H58) (99/249; 40%), 3.1.1 (97/249; 39%), and 2.3.2 (29/249; 12%). Genotypes 4.3.1 and 3.1.1 are confined within East and West Africa, respectively. MDR phenotype is found in over 50% of organisms restricted within these dominant genotypes. High incidences of MDR S. Typhi are calculated in locations with a high burden of typhoid, specifically in children aged <15 years. Antimicrobial stewardship, MDR surveillance, and the introduction of typhoid conjugate vaccines will be critical for the control of MDR typhoid in Africa.

Citing Articles

An exploration of unusual antimicrobial resistance phenotypes in Salmonella Typhi from Blantyre, Malawi reveals the ongoing role of IncHI1 plasmids.

Zuza A, Wailan A, Anscombe C, Feasey N, Heinz E Gates Open Res. 2025; 8:143.

PMID: 39839218 PMC: 11750072. DOI: 10.12688/gatesopenres.16311.1.


Exploring SNP filtering strategies: the influence of strict vs soft core.

Taouk M, Featherstone L, Taiaroa G, Seemann T, Ingle D, Stinear T Microb Genom. 2025; 11(1.

PMID: 39812553 PMC: 11734701. DOI: 10.1099/mgen.0.001346.


Typhi Haplotype 58 biofilm formation and genetic variation in isolates from typhoid fever patients with gallstones in an endemic setting in Kenya.

Muturi P, Wachira P, Wagacha M, Mbae C, Kavai S, Mugo M Front Cell Infect Microbiol. 2024; 14:1468866.

PMID: 39606745 PMC: 11599249. DOI: 10.3389/fcimb.2024.1468866.


Diagnostic performance of Typhidot RDT in diagnosis of typhoid fever and antibiotic resistance characterisation in a cross-sectional study in Southern Ghana.

Sam E, Alagbo J, Asamoah A, Ansah F, Tandoh K, Amenga-Etego L BMC Infect Dis. 2024; 24(1):1262.

PMID: 39511496 PMC: 11546492. DOI: 10.1186/s12879-024-10160-2.


Genotypic Diversity among Typhi Isolated from Children Living in Informal Settlements in Nairobi, Kenya.

Kavai S, Oyugi J, Mbae C, Wairimu C, Kering K, Kebenei C Int J Clin Microbiol. 2024; 1(3):18-27.

PMID: 39483419 PMC: 11526766. DOI: 10.14302/issn.2690-4721.ijcm-24-5195.


References
1.
Crump J, Luby S, Mintz E . The global burden of typhoid fever. Bull World Health Organ. 2004; 82(5):346-53. PMC: 2622843. View

2.
Marks F, von Kalckreuth V, Aaby P, Adu-Sarkodie Y, El Tayeb M, Ali M . Incidence of invasive salmonella disease in sub-Saharan Africa: a multicentre population-based surveillance study. Lancet Glob Health. 2017; 5(3):e310-e323. PMC: 5316558. DOI: 10.1016/S2214-109X(17)30022-0. View

3.
Mirza S, Beeching N, Hart C . Multi-drug resistant typhoid: a global problem. J Med Microbiol. 1996; 44(5):317-9. DOI: 10.1099/00222615-44-5-317. View

4.
Kabwama S, Bulage L, Nsubuga F, Pande G, Oguttu D, Mafigiri R . A large and persistent outbreak of typhoid fever caused by consuming contaminated water and street-vended beverages: Kampala, Uganda, January - June 2015. BMC Public Health. 2017; 17(1):23. PMC: 5216563. DOI: 10.1186/s12889-016-4002-0. View

5.
Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu C, Xie D . BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2014; 10(4):e1003537. PMC: 3985171. DOI: 10.1371/journal.pcbi.1003537. View