» Articles » PMID: 30456374

Atomic Force Microscopy Reveals Structural Variability Amongst Nuclear Pore Complexes

Overview
Date 2018 Nov 21
PMID 30456374
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

The nuclear pore complex (NPC) is a proteinaceous assembly that regulates macromolecular transport into and out of the nucleus. Although the structure of its scaffold is being revealed in increasing detail, its transport functionality depends upon an assembly of intrinsically disordered proteins (called FG-Nups) anchored inside the pore's central channel, which have hitherto eluded structural characterization. Here, using high-resolution atomic force microscopy, we provide a structural and nanomechanical analysis of individual NPCs. Our data highlight the structural diversity and complexity at the nuclear envelope, showing the interplay between the lamina network, actin filaments, and the NPCs. It reveals the dynamic behaviour of NPC scaffolds and displays pores of varying sizes. Of functional importance, the NPC central channel shows large structural diversity, supporting the notion that FG-Nup cohesiveness is in a range that facilitates collective rearrangements at little energetic cost. Finally, different nuclear transport receptors are shown to interact in qualitatively different ways with the FG-Nups, with particularly strong binding of importin-β.

Citing Articles

Simulating structurally variable nuclear pore complexes for microscopy.

Theiss M, Heriche J, Russell C, Helekal D, Soppitt A, Ries J Bioinformatics. 2023; 39(10).

PMID: 37756700 PMC: 10570993. DOI: 10.1093/bioinformatics/btad587.


Maximum-likelihood model fitting for quantitative analysis of SMLM data.

Wu Y, Hoess P, Tschanz A, Matti U, Mund M, Ries J Nat Methods. 2022; 20(1):139-148.

PMID: 36522500 PMC: 9834062. DOI: 10.1038/s41592-022-01676-z.


Physics of the Nuclear Pore Complex: Theory, Modeling and Experiment.

Hoogenboom B, Hough L, Lemke E, Lim R, Onck P, Zilman A Phys Rep. 2022; 921:1-53.

PMID: 35892075 PMC: 9306291. DOI: 10.1016/j.physrep.2021.03.003.


Teaching old dogmas new tricks: recent insights into the nuclear import of HIV-1.

Dharan A, Campbell E Curr Opin Virol. 2022; 53:101203.

PMID: 35121335 PMC: 9175559. DOI: 10.1016/j.coviro.2022.101203.


Maturation and shuttling of the yeast telomerase RNP: assembling something new using recycled parts.

Bartle L, Vasianovich Y, Wellinger R Curr Genet. 2021; 68(1):3-14.

PMID: 34476547 PMC: 8801399. DOI: 10.1007/s00294-021-01210-2.


References
1.
von Appen A, Kosinski J, Sparks L, Ori A, DiGuilio A, Vollmer B . In situ structural analysis of the human nuclear pore complex. Nature. 2015; 526(7571):140-143. PMC: 4886846. DOI: 10.1038/nature15381. View

2.
Jovanovic-Talisman T, Tetenbaum-Novatt J, McKenney A, Zilman A, Peters R, Rout M . Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature. 2008; 457(7232):1023-7. PMC: 2764719. DOI: 10.1038/nature07600. View

3.
Hinshaw J, Milligan R . Nuclear pore complexes exceeding eightfold rotational symmetry. J Struct Biol. 2003; 141(3):259-68. DOI: 10.1016/s1047-8477(02)00626-3. View

4.
Bestembayeva A, Kramer A, Labokha A, Osmanovic D, Liashkovich I, Orlova E . Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes. Nat Nanotechnol. 2014; 10(1):60-64. PMC: 4286247. DOI: 10.1038/nnano.2014.262. View

5.
Cronshaw J, Krutchinsky A, Zhang W, Chait B, Matunis M . Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol. 2002; 158(5):915-27. PMC: 2173148. DOI: 10.1083/jcb.200206106. View