» Articles » PMID: 30428316

Alternating-Magnetic-Field-Mediated Wireless Manipulations of a Liquid Metal for Therapeutic Bioengineering

Overview
Journal iScience
Publisher Cell Press
Date 2018 Nov 15
PMID 30428316
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

As emergent multifunctional materials, room temperature liquid metals (LMs) display many unique properties. Here we show that applying an external alternating magnetic field (AMF) to an LM induces various physical phenomena, such as exothermic behavior, controlled locomotion, electromagnetic levitation, and transformations of the LMs between different morphologies and configurations, in a non-contact manner. Additional interesting therapeutic bioengineering applications of LMs demonstrated herein include in vitro and in vivo effective cancer magnetic hyperthermia via wireless AMF, remote manipulation of a pill-shaped microdevice based on an LM/hydrogel composite, and spatiotemporal controlled release of drug molecules from the microdevice. Overall, as an innovative therapeutic bioengineering technology, this platform and the described performance traits of LMs enable the development of biocompatible smart devices with a wide range of dynamic components that can be wirelessly controlled in a manner that solves issues related to the powering of devices and biocompatibility.

Citing Articles

Tough hydrogel-coated containment capsule of magnetic liquid metal for remote gastrointestinal operation.

Shen Y, Cao J, Zhou E, Wang L, Zhang K, Xue Y Natl Sci Rev. 2025; 12(4):nwaf042.

PMID: 40065991 PMC: 11892562. DOI: 10.1093/nsr/nwaf042.


Spermatozoon-propelled microcellular submarines combining innate magnetic hyperthermia with derived nanotherapies for thrombolysis and ischemia mitigation.

Weng P, Liu C, Jheng P, Chiang C, Chen Y, Rethi L J Nanobiotechnology. 2024; 22(1):470.

PMID: 39118029 PMC: 11308583. DOI: 10.1186/s12951-024-02716-w.


Liquid Metal as Energy Conversion Sensitizers: Materials and Applications.

Wang D, Hou Y, Tang J, Liu J, Rao W Adv Sci (Weinh). 2024; 11(37):e2304777.

PMID: 38468447 PMC: 11462305. DOI: 10.1002/advs.202304777.


Robot locomotion by fluid-fluid interaction.

Kitamori H, Kudoh S, Shintake J Sci Rep. 2023; 13(1):21994.

PMID: 38081946 PMC: 10713600. DOI: 10.1038/s41598-023-49193-z.


Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials.

Mamun A, Sabantina L Polymers (Basel). 2023; 15(8).

PMID: 37112049 PMC: 10143376. DOI: 10.3390/polym15081902.


References
1.
ONeal D, Hirsch L, Halas N, Payne J, West J . Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004; 209(2):171-6. DOI: 10.1016/j.canlet.2004.02.004. View

2.
Timko B, Arruebo M, Shankarappa S, McAlvin J, Okonkwo O, Mizrahi B . Near-infrared-actuated devices for remotely controlled drug delivery. Proc Natl Acad Sci U S A. 2014; 111(4):1349-54. PMC: 3910641. DOI: 10.1073/pnas.1322651111. View

3.
Curley S . Radiofrequency ablation of malignant liver tumors. Ann Surg Oncol. 2003; 10(4):338-47. DOI: 10.1245/aso.2003.07.017. View

4.
Zavabeti A, Daeneke T, Chrimes A, OMullane A, Ou J, Mitchell A . Ionic imbalance induced self-propulsion of liquid metals. Nat Commun. 2016; 7:12402. PMC: 4976217. DOI: 10.1038/ncomms12402. View

5.
Hussain S, Hess K, Gearhart J, Geiss K, Schlager J . In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro. 2005; 19(7):975-83. DOI: 10.1016/j.tiv.2005.06.034. View