» Articles » PMID: 30420558

Lipin1 Deficiency Causes Sarcoplasmic Reticulum Stress and Chaperone-responsive Myopathy

Abstract

As a consequence of impaired glucose or fatty acid metabolism, bioenergetic stress in skeletal muscles may trigger myopathy and rhabdomyolysis. Genetic mutations causing loss of function of the LPIN1 gene frequently lead to severe rhabdomyolysis bouts in children, though the metabolic alterations and possible therapeutic interventions remain elusive. Here, we show that lipin1 deficiency in mouse skeletal muscles is sufficient to trigger myopathy. Strikingly, muscle fibers display strong accumulation of both neutral and phospholipids. The metabolic lipid imbalance can be traced to an altered fatty acid synthesis and fatty acid oxidation, accompanied by a defect in acyl chain elongation and desaturation. As an underlying cause, we reveal a severe sarcoplasmic reticulum (SR) stress, leading to the activation of the lipogenic SREBP1c/SREBP2 factors, the accumulation of the Fgf21 cytokine, and alterations of SR-mitochondria morphology. Importantly, pharmacological treatments with the chaperone TUDCA and the fatty acid oxidation activator bezafibrate improve muscle histology and strength of lipin1 mutants. Our data reveal that SR stress and alterations in SR-mitochondria contacts are contributing factors and potential intervention targets of the myopathy associated with lipin1 deficiency.

Citing Articles

Adult-Onset Episodic Rhabdomyolysis in a Patient With a Heterozygous Lipin 1 (LPIN1) Mutation: A Case Report.

Bareja N, Chionatos R, Valhuerdi Porto C, Srinivasan N, Ghasemi M Cureus. 2025; 17(1):e76772.

PMID: 39897188 PMC: 11786101. DOI: 10.7759/cureus.76772.


Role of LIPIN 1 in regulating metabolic homeostasis in the retinal pigment epithelium.

Usoltseva A, Litwin C, Lee M, Hill C, Cai J, Chen Y FASEB J. 2024; 38(24):e70249.

PMID: 39673553 PMC: 11809763. DOI: 10.1096/fj.202400981R.


Phospholipid biosynthesis modulates nucleotide metabolism and reductive capacity.

Zhu Y, Tong X, Xue J, Qiu H, Zhang D, Zheng D Nat Chem Biol. 2024; 21(1):35-46.

PMID: 39060393 DOI: 10.1038/s41589-024-01689-z.


Exploring lipin1 as a promising therapeutic target for the treatment of Duchenne muscular dystrophy.

Jama A, Alshudukhi A, Burke S, Dong L, Kamau J, Morris B J Transl Med. 2024; 22(1):664.

PMID: 39014470 PMC: 11253568. DOI: 10.1186/s12967-024-05494-z.


Fibroblast Growth Factor 21: A Fascinating Perspective on the Regulation of Muscle Metabolism.

Li S, Chen J, Wei P, Zou T, You J Int J Mol Sci. 2023; 24(23).

PMID: 38069273 PMC: 10707024. DOI: 10.3390/ijms242316951.


References
1.
Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko G, Rudka T . OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell. 2006; 126(1):177-89. DOI: 10.1016/j.cell.2006.06.025. View

2.
Ozbalci C, Sachsenheimer T, Brugger B . Quantitative analysis of cellular lipids by nano-electrospray ionization mass spectrometry. Methods Mol Biol. 2013; 1033:3-20. DOI: 10.1007/978-1-62703-487-6_1. View

3.
Yoon Y, Krueger E, Oswald B, McNiven M . The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol. 2003; 23(15):5409-20. PMC: 165727. DOI: 10.1128/MCB.23.15.5409-5420.2003. View

4.
Michot C, Hubert L, Brivet M, De Meirleir L, Valayannopoulos V, Muller-Felber W . LPIN1 gene mutations: a major cause of severe rhabdomyolysis in early childhood. Hum Mutat. 2010; 31(7):E1564-73. DOI: 10.1002/humu.21282. View

5.
Tezze C, Romanello V, Desbats M, Fadini G, Albiero M, Favaro G . Age-Associated Loss of OPA1 in Muscle Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial Senescence. Cell Metab. 2017; 25(6):1374-1389.e6. PMC: 5462533. DOI: 10.1016/j.cmet.2017.04.021. View