» Articles » PMID: 30389920

Improved Estimation of Cancer Dependencies from Large-scale RNAi Screens Using Model-based Normalization and Data Integration

Abstract

The availability of multiple datasets comprising genome-scale RNAi viability screens in hundreds of diverse cancer cell lines presents new opportunities for understanding cancer vulnerabilities. Integrated analyses of these data to assess differential dependency across genes and cell lines are challenging due to confounding factors such as batch effects and variable screen quality, as well as difficulty assessing gene dependency on an absolute scale. To address these issues, we incorporated cell line screen-quality parameters and hierarchical Bayesian inference into DEMETER2, an analytical framework for analyzing RNAi screens ( https://depmap.org/R2-D2 ). This model substantially improves estimates of gene dependency across a range of performance measures, including identification of gold-standard essential genes and agreement with CRISPR/Cas9-based viability screens. It also allows us to integrate information across three large RNAi screening datasets, providing a unified resource representing the most extensive compilation of cancer cell line genetic dependencies to date.

Citing Articles

Sex Differences in Cancer Functional Genomics: Gene Dependency and Drug Sensitivity.

Zeltser N, Zhu C, Oh J, Li C, Boutros P bioRxiv. 2025; .

PMID: 39975298 PMC: 11838570. DOI: 10.1101/2025.02.05.636540.


Bio-primed machine learning to enhance discovery of relevant biomarkers.

Henke D, Renwick A, Zoeller J, Meena J, Neill N, Bowling E NPJ Precis Oncol. 2025; 9(1):39.

PMID: 39915634 PMC: 11802771. DOI: 10.1038/s41698-025-00825-9.


Impact of rare non-coding variants on human diseases through alternative polyadenylation outliers.

Zou X, Zhao Z, Chen Y, Xiong K, Wang Z, Chen S Nat Commun. 2025; 16(1):682.

PMID: 39819850 PMC: 11739498. DOI: 10.1038/s41467-024-55407-3.


Association of Proteasome Activity and Pool Heterogeneity with Markers Determining the Molecular Subtypes of Breast Cancer.

Kondakova I, Sereda E, Sidenko E, Vtorushin S, Vedernikova V, Burov A Cancers (Basel). 2025; 17(1.

PMID: 39796785 PMC: 11720674. DOI: 10.3390/cancers17010159.


Genome analysis uncovers an inverse correlation between alterations in P21-activated kinases and patient survival across multiple cancer types.

Vo J, La L, Anderson A, Alanazi A, Somanath P Physiol Rep. 2025; 13(1):e70192.

PMID: 39756822 PMC: 11702381. DOI: 10.14814/phy2.70192.


References
1.
Li W, Xu H, Xiao T, Cong L, Love M, Zhang F . MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 2014; 15(12):554. PMC: 4290824. DOI: 10.1186/s13059-014-0554-4. View

2.
McDonald 3rd E, de Weck A, Schlabach M, Billy E, Mavrakis K, Hoffman G . Project DRIVE: A Compendium of Cancer Dependencies and Synthetic Lethal Relationships Uncovered by Large-Scale, Deep RNAi Screening. Cell. 2017; 170(3):577-592.e10. DOI: 10.1016/j.cell.2017.07.005. View

3.
Hart T, Brown K, Sircoulomb F, Rottapel R, Moffat J . Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol Syst Biol. 2014; 10:733. PMC: 4299491. DOI: 10.15252/msb.20145216. View

4.
Jackson A, Burchard J, Schelter J, Chau B, Cleary M, Lim L . Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. RNA. 2006; 12(7):1179-87. PMC: 1484447. DOI: 10.1261/rna.25706. View

5.
Meyers R, Bryan J, McFarland J, Weir B, Sizemore A, Xu H . Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet. 2017; 49(12):1779-1784. PMC: 5709193. DOI: 10.1038/ng.3984. View