» Articles » PMID: 3038670

A Tn10-lacZ-kanR-URA3 Gene Fusion Transposon for Insertion Mutagenesis and Fusion Analysis of Yeast and Bacterial Genes

Overview
Journal Genetics
Specialty Genetics
Date 1987 Jun 1
PMID 3038670
Citations 64
Authors
Affiliations
Soon will be listed here.
Abstract

We describe here a new variant of transposon Tn10 especially adapted for transposon analysis of cloned yeast genes; it can equally well be used for analysis of prokaryotic genes. We have applied this element to analysis of the LEU2, RAD50, and CDC48 genes of Saccharomyces cerevisiae. This transposon, nicknamed mini-Tn10-LUK, contains a lacZ gene without efficient transcription or translation start signals, an intact URA3 gene, and a kanR determinant. The lacZ gene can be activated by appropriate insertion of the element into an actively expressed gene. Other yeast genes can easily be substituted for URA3 in the available constructs. The mini-Tn10-LUK system has several important advantages. Transposition events occur in Escherichia coli at high frequency and into many different sites in yeast DNA. It is easy to obtain enough insertions to sensitively define the functional limits of a gene. Transposon insertions can be obtained in a single step by standard transposon procedures and can be screened immediately for phenotype either in yeast or in E. coli. The LacZ phenotypes of the insertion mutations provide a good circumstantial indication of the orientation of the target gene. Under favorable circumstances, usable lacZ protein fusions are created. Transposon insertion mutations obtained by this method directly facilitate additional genetic, functional, physical and DNA sequence analysis of the gene or region of interest.

Citing Articles

Eric Lander and David Botstein on Mapping Quantitative Traits.

Churchill G Genetics. 2016; 203(1):1-3.

PMID: 27183560 PMC: 4858765. DOI: 10.1534/genetics.116.189803.


Saccharomyces cerevisiae Tti2 Regulates PIKK Proteins and Stress Response.

Hoffman K, Duennwald M, Karagiannis J, Genereaux J, McCarton A, Brandl C G3 (Bethesda). 2016; 6(6):1649-59.

PMID: 27172216 PMC: 4889661. DOI: 10.1534/g3.116.029520.


Chromatin- and transcription-related factors repress transcription from within coding regions throughout the Saccharomyces cerevisiae genome.

Cheung V, Chua G, Batada N, Landry C, Michnick S, Hughes T PLoS Biol. 2008; 6(11):e277.

PMID: 18998772 PMC: 2581627. DOI: 10.1371/journal.pbio.0060277.


Homologous Streptomycin Resistance Gene Present among Diverse Gram-Negative Bacteria in New York State Apple Orchards.

Norelli J, Burr T, Lo Cicero A, Gilbert M, Katz B Appl Environ Microbiol. 1991; 57(2):486-91.

PMID: 16348415 PMC: 182737. DOI: 10.1128/aem.57.2.486-491.1991.


Genetic evidence that GTP is required for transposition of IS903 and Tn552 in Escherichia coli.

Coros A, Twiss E, Tavakoli N, Derbyshire K J Bacteriol. 2005; 187(13):4598-606.

PMID: 15968071 PMC: 1151752. DOI: 10.1128/JB.187.13.4598-4606.2005.


References
1.
JEFFCOATE T . Male Infertility. Br Med J. 2010; 2(4466):185-91. PMC: 2053983. View

2.
Kleckner N, Steele D, Reichardt K, Botstein D . Specificity of insertion by the translocatable tetracycline-resistance element Tn10. Genetics. 1979; 92(4):1023-40. PMC: 1214053. DOI: 10.1093/genetics/92.4.1023. View

3.
Foster T, Davis M, Roberts D, Takeshita K, Kleckner N . Genetic organization of transposon Tn10. Cell. 1981; 23(1):201-13. DOI: 10.1016/0092-8674(81)90285-3. View

4.
Rothstein R . One-step gene disruption in yeast. Methods Enzymol. 1983; 101:202-11. DOI: 10.1016/0076-6879(83)01015-0. View

5.
Kalnins A, Otto K, Ruther U, Muller-Hill B . Sequence of the lacZ gene of Escherichia coli. EMBO J. 1983; 2(4):593-7. PMC: 555066. DOI: 10.1002/j.1460-2075.1983.tb01468.x. View