» Articles » PMID: 30333710

Control and Prediction of the Organic Solid State: a Challenge to Theory and Experiment

Overview
Date 2018 Oct 19
PMID 30333710
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The ability of theoretical chemists to quantitatively model the weak forces between organic molecules is being exploited to predict their crystal structures and estimate their physical properties. Evolving crystal structure prediction methods are increasingly being used to aid the design of organic functional materials and provide information about thermodynamically plausible polymorphs of speciality organic materials to aid, for example, pharmaceutical development. However, the increasingly sophisticated experimental studies for detecting the range of organic solid-state behaviours provide many challenges for improving quantitative theories that form the basis for the computer modelling. It is challenging to calculate the relative thermodynamic stability of different organic crystal structures, let alone understand the kinetic effects that determine which polymorphs can be observed and are practically important. However, collaborations between experiment and theory are reaching the stage of devising experiments to target the first crystallization of new polymorphs or create novel organic molecular materials.

Citing Articles

Hybrid and composite materials of organic crystals.

Yang X, Al-Handawi M, Li L, Naumov P, Zhang H Chem Sci. 2024; 15(8):2684-2696.

PMID: 38404393 PMC: 10884791. DOI: 10.1039/d3sc06469g.


Benchmark Data Set of Crystalline Organic Semiconductors.

Zhugayevych A, Sun W, van der Heide T, Lien-Medrano C, Frauenheim T, Tretiak S J Chem Theory Comput. 2023; 19(22):8481-8490.

PMID: 37969072 PMC: 10688188. DOI: 10.1021/acs.jctc.3c00861.


Machine Learning Nucleation Collective Variables with Graph Neural Networks.

Dietrich F, Advincula X, Gobbo G, Bellucci M, Salvalaglio M J Chem Theory Comput. 2023; 20(4):1600-1611.

PMID: 37877821 PMC: 10902841. DOI: 10.1021/acs.jctc.3c00722.


Efficient Screening of Coformers for Active Pharmaceutical Ingredient Cocrystallization.

Sugden I, Braun D, Bowskill D, Adjiman C, Pantelides C Cryst Growth Des. 2022; 22(7):4513-4527.

PMID: 35915670 PMC: 9337750. DOI: 10.1021/acs.cgd.2c00433.


Bright Frenkel Excitons in Molecular Crystals: A Survey.

Nematiaram T, Padula D, Troisi A Chem Mater. 2021; 33(9):3368-3378.

PMID: 34526736 PMC: 8432684. DOI: 10.1021/acs.chemmater.1c00645.


References
1.
Braun D, Bhardwaj R, Florence A, Tocher D, Price S . Complex Polymorphic System of Gallic Acid-Five Monohydrates, Three Anhydrates, and over 20 Solvates. Cryst Growth Des. 2013; 13(1):19-23. PMC: 3557919. DOI: 10.1021/cg301506x. View

2.
Karamertzanis P, Raiteri P, Parrinello M, Leslie M, Price S . The thermal stability of lattice-energy minima of 5-fluorouracil: metadynamics as an aid to polymorph prediction. J Phys Chem B. 2008; 112(14):4298-308. DOI: 10.1021/jp709764e. View

3.
Beran G . Modeling Polymorphic Molecular Crystals with Electronic Structure Theory. Chem Rev. 2016; 116(9):5567-613. DOI: 10.1021/acs.chemrev.5b00648. View

4.
Nyman J, Pundyke O, Day G . Accurate force fields and methods for modelling organic molecular crystals at finite temperatures. Phys Chem Chem Phys. 2016; 18(23):15828-37. DOI: 10.1039/c6cp02261h. View

5.
Braun D, Oberacher H, Arnhard K, Orlova M, Griesser U . 4-Aminoquinaldine monohydrate polymorphism: Prediction and impurity aided discovery of a difficult to access stable form. CrystEngComm. 2017; 18(22):4053-4067. PMC: 5482396. DOI: 10.1039/C5CE01758K. View