» Articles » PMID: 30307532

Colocalization Analyses of Genomic Elements: Approaches, Recommendations and Challenges

Overview
Journal Bioinformatics
Specialty Biology
Date 2018 Oct 12
PMID 30307532
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

Motivation: Many high-throughput methods produce sets of genomic regions as one of their main outputs. Scientists often use genomic colocalization analysis to interpret such region sets, for example to identify interesting enrichments and to understand the interplay between the underlying biological processes. Although widely used, there is little standardization in how these analyses are performed. Different practices can substantially affect the conclusions of colocalization analyses.

Results: Here, we describe the different approaches and provide recommendations for performing genomic colocalization analysis, while also discussing common methodological challenges that may influence the conclusions. As illustrated by concrete example cases, careful attention to analysis details is needed in order to meet these challenges and to obtain a robust and biologically meaningful interpretation of genomic region set data.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Citing Articles

Repeat-based holocentromeres of the woodrush Luzula sylvatica reveal insights into the evolutionary transition to holocentricity.

Mata-Sucre Y, Kratka M, Oliveira L, Neumann P, Macas J, Schubert V Nat Commun. 2024; 15(1):9565.

PMID: 39500889 PMC: 11538461. DOI: 10.1038/s41467-024-53944-5.


Exploring potential therapeutic targets for asthma: a proteome-wide Mendelian randomization analysis.

Jiang Y, Wang Y, Guo J, Wang Z, Wang X, Yao X J Transl Med. 2024; 22(1):978.

PMID: 39472987 PMC: 11520847. DOI: 10.1186/s12967-024-05782-8.


Fast Context-Aware Analysis of Genome Annotation Colocalization.

Gafurov A, Vinar T, Medvedev P, Brejova B J Comput Biol. 2024; 31(10):946-964.

PMID: 39381845 PMC: 11698669. DOI: 10.1089/cmb.2024.0667.


Association of inflammatory cytokines with lung function, chronic lung diseases, and COVID-19.

Rontogianni M, Gill D, Bouras E, Asimakopoulos A, Tzoulaki I, Karhunen V iScience. 2024; 27(10):110704.

PMID: 39319267 PMC: 11417323. DOI: 10.1016/j.isci.2024.110704.


Methods for constructing and evaluating consensus genomic interval sets.

Rymuza J, Sun Y, Zheng G, LeRoy N, Murach M, Phan N Nucleic Acids Res. 2024; 52(17):10119-10131.

PMID: 39180401 PMC: 11417377. DOI: 10.1093/nar/gkae685.


References
1.
Gel B, Diez-Villanueva A, Serra E, Buschbeck M, Peinado M, Malinverni R . regioneR: an R/Bioconductor package for the association analysis of genomic regions based on permutation tests. Bioinformatics. 2015; 32(2):289-91. PMC: 4708104. DOI: 10.1093/bioinformatics/btv562. View

2.
MacArthur D . Methods: Face up to false positives. Nature. 2012; 487(7408):427-8. DOI: 10.1038/487427a. View

3.
Lander E . Initial impact of the sequencing of the human genome. Nature. 2011; 470(7333):187-97. DOI: 10.1038/nature09792. View

4.
Heinz S, Romanoski C, Benner C, Glass C . The selection and function of cell type-specific enhancers. Nat Rev Mol Cell Biol. 2015; 16(3):144-54. PMC: 4517609. DOI: 10.1038/nrm3949. View

5.
Rand K, Grytten I, Nederbragt A, Storvik G, Glad I, Sandve G . Coordinates and intervals in graph-based reference genomes. BMC Bioinformatics. 2017; 18(1):263. PMC: 5437615. DOI: 10.1186/s12859-017-1678-9. View