» Articles » PMID: 30258685

Real-time Corneal Segmentation and 3D Needle Tracking in Intrasurgical OCT

Overview
Specialty Radiology
Date 2018 Sep 28
PMID 30258685
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Ophthalmic procedures demand precise surgical instrument control in depth, yet standard operating microscopes supply limited depth perception. Current commercial microscope-integrated optical coherence tomography partially meets this need with manually-positioned cross-sectional images that offer qualitative estimates of depth. In this work, we present methods for automatic quantitative depth measurement using real-time, two-surface corneal segmentation and needle tracking in OCT volumes. We then demonstrate these methods for guidance of deep anterior lamellar keratoplasty (DALK) needle insertions. Surgeons using the output of these methods improved their ability to reach a target depth, and decreased their incidence of corneal perforations, both with statistical significance. We believe these methods could increase the success rate of DALK and thereby improve patient outcomes.

Citing Articles

Robotics and optical coherence tomography: current works and future perspectives [Invited].

Ma G, McCloud M, Tian Y, Narawane A, Shi H, Trout R Biomed Opt Express. 2025; 16(2):578-602.

PMID: 39958851 PMC: 11828438. DOI: 10.1364/BOE.547943.


Data-Driven Modelling and Control for Robot Needle Insertion in Deep Anterior Lamellar Keratoplasty.

Edwards W, Tang G, Tian Y, Draelos M, Izatt J, Kuo A IEEE Robot Autom Lett. 2023; 7(2):1526-1533.

PMID: 37090091 PMC: 10117280. DOI: 10.1109/lra.2022.3140458.


Optical coherence tomography refraction and optical path length correction for image-guided corneal surgery.

Tian Y, Draelos M, McNabb R, Hauser K, Kuo A, Izatt J Biomed Opt Express. 2022; 13(9):5035-5049.

PMID: 36187253 PMC: 9484446. DOI: 10.1364/BOE.464762.


Optical Coherence Tomography-Guided Robotic Ophthalmic Microsurgery via Reinforcement Learning from Demonstration.

Keller B, Draelos M, Zhou K, Qian R, Kuo A, Konidaris G IEEE Trans Robot. 2022; 36(4):1207-1218.

PMID: 36168513 PMC: 9511825. DOI: 10.1109/TRO.2020.2980158.


Stacked dilated convolutions and asymmetric architecture for U-Net-based medical image segmentation.

Wang S, Singh V, Cheah E, Wang X, Li Q, Chou S Comput Biol Med. 2022; 148:105891.

PMID: 35932729 PMC: 9596264. DOI: 10.1016/j.compbiomed.2022.105891.


References
1.
Jian Y, Wong K, Sarunic M . Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering. J Biomed Opt. 2013; 18(2):26002. DOI: 10.1117/1.JBO.18.2.026002. View

2.
Carrasco-Zevallos O, Keller B, Viehland C, Shen L, Waterman G, Todorich B . Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography. Sci Rep. 2016; 6:31689. PMC: 4990849. DOI: 10.1038/srep31689. View

3.
Dufour P, Ceklic L, Abdillahi H, Schroder S, De Dzanet S, Wolf-Schnurrbusch U . Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints. IEEE Trans Med Imaging. 2012; 32(3):531-43. DOI: 10.1109/TMI.2012.2225152. View

4.
Saad A, Guilbert E, Grise-Dulac A, Sabatier P, Gatinel D . Intraoperative OCT-Assisted DMEK: 14 Consecutive Cases. Cornea. 2015; 34(7):802-7. DOI: 10.1097/ICO.0000000000000462. View

5.
Ehlers J, Srivastava S, Feiler D, Noonan A, Rollins A, Tao Y . Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback. PLoS One. 2014; 9(8):e105224. PMC: 4139373. DOI: 10.1371/journal.pone.0105224. View