» Articles » PMID: 30250778

Simultaneous Suppression of the Dendrite Formation and Shuttle Effect in a Lithium-Sulfur Battery by Bilateral Solid Electrolyte Interface

Overview
Journal Adv Sci (Weinh)
Date 2018 Sep 26
PMID 30250778
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Although the reversible and inexpensive energy storage characteristics of the lithium-sulfur (Li-S) battery have made it a promising candidate for electrical energy storage, the dendrite growth (anode) and shuttle effect (cathode) hinder its practical application. Here, it is shown that new electrolytes for Li-S batteries promote the simultaneous formation of bilateral solid electrolyte interfaces on the sulfur-host cathode and lithium anode, thus effectively suppressing the shuttle effect and dendrite growth. These high-capacity Li-S batteries with new electrolytes exhibit a long-term cycling stability, ultrafast-charge/slow-discharge rates, super-low self-discharge performance, and a capacity retention of 94.9% even after a 130 d long storage. Importantly, the long cycle stability of these industrial grade high-capacity Li-S pouch cells with new electrolytes will provide the basis for creating robust energy dense Li-S batteries with an extensive life cycle.

Citing Articles

Effect of Nitrogen Dopant Agents in the Performance of Graphene-Based Cathodes for Li-S Batteries.

Licari A, Benitez A, Gomez-Camer J, Trocoli R, Caballero A Nanomaterials (Basel). 2024; 14(6).

PMID: 38535637 PMC: 10974078. DOI: 10.3390/nano14060489.


Breaking the Barrier: Strategies for Mitigating Shuttle Effect in Lithium-Sulfur Batteries Using Advanced Separators.

Zhu Y, Chen Z, Chen H, Fu X, Awuye D, Yin X Polymers (Basel). 2023; 15(19).

PMID: 37836004 PMC: 10575298. DOI: 10.3390/polym15193955.


Preparation of Bacterial Cellulose/Ketjen Black-TiO Composite Separator and Its Application in Lithium-Sulfur Batteries.

Yan M, Zhao C, Li X Polymers (Basel). 2022; 14(24).

PMID: 36559926 PMC: 9788007. DOI: 10.3390/polym14245559.


Atomic-scale regulation of anionic and cationic migration in alkali metal batteries.

Xiong P, Zhang F, Zhang X, Liu Y, Wu Y, Wang S Nat Commun. 2021; 12(1):4184.

PMID: 34234123 PMC: 8263716. DOI: 10.1038/s41467-021-24399-9.


Ultra-High Mass-Loading Cathode for Aqueous Zinc-Ion Battery Based on Graphene-Wrapped Aluminum Vanadate Nanobelts.

Zhang W, Liang S, Fang G, Yang Y, Zhou J Nanomicro Lett. 2021; 11(1):69.

PMID: 34137994 PMC: 7770939. DOI: 10.1007/s40820-019-0300-2.


References
1.
Fan Q, Liu W, Weng Z, Sun Y, Wang H . Ternary Hybrid Material for High-Performance Lithium-Sulfur Battery. J Am Chem Soc. 2015; 137(40):12946-53. DOI: 10.1021/jacs.5b07071. View

2.
Safari M, Kwok C, Nazar L . Transport Properties of Polysulfide Species in Lithium-Sulfur Battery Electrolytes: Coupling of Experiment and Theory. ACS Cent Sci. 2016; 2(8):560-8. PMC: 4999976. DOI: 10.1021/acscentsci.6b00169. View

3.
Fei L, Li X, Bi W, Zhuo Z, Wei W, Sun L . Graphene/sulfur hybrid nanosheets from a space-confined "sauna" reaction for high-performance lithium-sulfur batteries. Adv Mater. 2015; 27(39):5936-42. DOI: 10.1002/adma.201502668. View

4.
Xu Z, Wang J, Yang J, Miao X, Chen R, Qian J . Enhanced Performance of a Lithium-Sulfur Battery Using a Carbonate-Based Electrolyte. Angew Chem Int Ed Engl. 2016; 55(35):10372-5. DOI: 10.1002/anie.201605931. View

5.
Cui Z, Zu C, Zhou W, Manthiram A, Goodenough J . Mesoporous Titanium Nitride-Enabled Highly Stable Lithium-Sulfur Batteries. Adv Mater. 2016; 28(32):6926-31. DOI: 10.1002/adma.201601382. View