» Articles » PMID: 30244834

The Mcm2-Ctf4-Polα Axis Facilitates Parental Histone H3-H4 Transfer to Lagging Strands

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2018 Sep 25
PMID 30244834
Citations 109
Authors
Affiliations
Soon will be listed here.
Abstract

Although essential for epigenetic inheritance, the transfer of parental histone (H3-H4) tetramers that contain epigenetic modifications to replicating DNA strands is poorly understood. Here, we show that the Mcm2-Ctf4-Polα axis facilitates the transfer of parental (H3-H4) tetramers to lagging-strand DNA at replication forks. Mutating the conserved histone-binding domain of the Mcm2 subunit of the CMG (Cdc45-MCM-GINS) DNA helicase, which translocates along the leading-strand template, results in a marked enrichment of parental (H3-H4) on leading strand, due to the impairment of the transfer of parental (H3-H4) to lagging strands. Similar effects are observed in Ctf4 and Polα primase mutants that disrupt the connection of the CMG helicase to Polα that resides on lagging-strand template. Our results support a model whereby parental (H3-H4) complexes displaced from nucleosomes by DNA unwinding at replication forks are transferred by the CMG-Ctf4-Polα complex to lagging-strand DNA for nucleosome assembly at the original location.

Citing Articles

Increased levels of lagging strand polymerase α in an adult stem cell lineage affect replication-coupled histone incorporation.

Davis B, Snedeker J, Ranjan R, Wooten M, Barton S, Blundon J Sci Adv. 2025; 11(9):eadu6799.

PMID: 40020063 PMC: 11870066. DOI: 10.1126/sciadv.adu6799.


Disabling leading and lagging strand histone transmission results in parental histones loss and reduced cell plasticity and viability.

Kollenstart L, Biran A, Alcaraz N, Reveron-Gomez N, Solis-Mezarino V, Volker-Albert M Sci Adv. 2025; 11(8):eadr1453.

PMID: 39970210 PMC: 11837984. DOI: 10.1126/sciadv.adr1453.


A tale of two strands: Decoding chromatin replication through strand-specific sequencing.

Li Z, Zhang Z Mol Cell. 2025; 85(2):238-261.

PMID: 39824166 PMC: 11750172. DOI: 10.1016/j.molcel.2024.10.035.


H3K56 acetylation regulates chromatin maturation following DNA replication.

Duan S, Nodelman I, Zhou H, Tsukiyama T, Bowman G, Zhang Z Nat Commun. 2025; 16(1):134.

PMID: 39746969 PMC: 11697131. DOI: 10.1038/s41467-024-55144-7.


Molecular mechanism of parental H3/H4 recycling at a replication fork.

Nagae F, Murayama Y, Terakawa T Nat Commun. 2024; 15(1):9485.

PMID: 39488545 PMC: 11531469. DOI: 10.1038/s41467-024-53187-4.


References
1.
Kurat C, Yeeles J, Patel H, Early A, Diffley J . Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates. Mol Cell. 2016; 65(1):117-130. PMC: 5222724. DOI: 10.1016/j.molcel.2016.11.016. View

2.
Zhang Z, Shibahara K, Stillman B . PCNA connects DNA replication to epigenetic inheritance in yeast. Nature. 2000; 408(6809):221-5. DOI: 10.1038/35041601. View

3.
Luger K, Mader A, Richmond R, Sargent D, Richmond T . Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997; 389(6648):251-60. DOI: 10.1038/38444. View

4.
Brogaard K, Xi L, Wang J, Widom J . A map of nucleosome positions in yeast at base-pair resolution. Nature. 2012; 486(7404):496-501. PMC: 3786739. DOI: 10.1038/nature11142. View

5.
Devbhandari S, Jiang J, Kumar C, Whitehouse I, Remus D . Chromatin Constrains the Initiation and Elongation of DNA Replication. Mol Cell. 2016; 65(1):131-141. PMC: 5256687. DOI: 10.1016/j.molcel.2016.10.035. View