» Articles » PMID: 30232340

Processive Chitinase is Brownian Monorail Operated by Fast Catalysis After Peeling Rail from Crystalline Chitin

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Sep 21
PMID 30232340
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Processive chitinase is a linear molecular motor which moves on the surface of crystalline chitin driven by processive hydrolysis of single chitin chain. Here, we analyse the mechanism underlying unidirectional movement of Serratia marcescens chitinase A (SmChiA) using high-precision single-molecule imaging, X-ray crystallography, and all-atom molecular dynamics simulation. SmChiA shows fast unidirectional movement of ~50 nm s with 1 nm forward and backward steps, consistent with the length of reaction product chitobiose. Analysis of the kinetic isotope effect reveals fast substrate-assisted catalysis with time constant of ~3 ms. Decrystallization of the single chitin chain from crystal surface is the rate-limiting step of movement with time constant of ~17 ms, achieved by binding free energy at the product-binding site of SmChiA. Our results demonstrate that SmChiA operates as a burnt-bridge Brownian ratchet wherein the Brownian motion along the single chitin chain is rectified forward by substrate-assisted catalysis.

Citing Articles

Rational engineering of DNA-nanoparticle motor with high speed and processivity comparable to motor proteins.

Harashima T, Otomo A, Iino R Nat Commun. 2025; 16(1):729.

PMID: 39820287 PMC: 11739693. DOI: 10.1038/s41467-025-56036-0.


Visualizing Single V-ATPase Rotation Using Janus Nanoparticles.

Otomo A, Wiemann J, Bhattacharyya S, Yamamoto M, Yu Y, Iino R Nano Lett. 2024; 24(49):15638-15644.

PMID: 39573818 PMC: 11638961. DOI: 10.1021/acs.nanolett.4c04109.


Visualizing Single V-ATPase Rotation Using Janus Nanoparticles.

Otomo A, Wiemann J, Bhattacharyya S, Yamamoto M, Yu Y, Iino R bioRxiv. 2024; .

PMID: 39229122 PMC: 11370591. DOI: 10.1101/2024.08.22.609254.


Structural characterization of ligand binding and pH-specific enzymatic activity of mouse Acidic Mammalian Chitinase.

Diaz R, Ecker A, Correy G, Asthana P, Young I, Faust B Elife. 2024; 12.

PMID: 38884443 PMC: 11182645. DOI: 10.7554/eLife.89918.


Motility of an autonomous protein-based artificial motor that operates via a burnt-bridge principle.

Korosec C, Unksov I, Surendiran P, Lyttleton R, Curmi P, Angstmann C Nat Commun. 2024; 15(1):1511.

PMID: 38396042 PMC: 10891099. DOI: 10.1038/s41467-024-45570-y.


References
1.
Nakamura A, Tasaki T, Okuni Y, Song C, Murata K, Kozai T . Rate constants, processivity, and productive binding ratio of chitinase A revealed by single-molecule analysis. Phys Chem Chem Phys. 2017; 20(5):3010-3018. DOI: 10.1039/c7cp04606e. View

2.
Divne C, Stahlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles J . The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science. 1994; 265(5171):524-8. DOI: 10.1126/science.8036495. View

3.
Deguchi S, Tsujii K, Horikoshi K . Cooking cellulose in hot and compressed water. Chem Commun (Camb). 2006; (31):3293-5. DOI: 10.1039/b605812d. View

4.
Liu T, Chen L, Zhou Y, Jiang X, Duan Y, Yang Q . Structure, Catalysis, and Inhibition of Chi-h, the Lepidoptera-exclusive Insect Chitinase. J Biol Chem. 2017; 292(6):2080-2088. PMC: 5313083. DOI: 10.1074/jbc.M116.755330. View

5.
Piszkiewicz D, Bruice T . Glycoside hydrolysis. II. Intramolecular carboxyl and acetamido group catalysis in beta-glycoside hydrolysis. J Am Chem Soc. 1968; 90(8):2156-63. DOI: 10.1021/ja01010a038. View