» Articles » PMID: 30206188

Opposing Kinesin Complexes Queue at Plus Tips to Ensure Microtubule Catastrophe at Cell Ends

Overview
Journal EMBO Rep
Specialty Molecular Biology
Date 2018 Sep 13
PMID 30206188
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

In fission yeast, the lengths of interphase microtubule (iMT) arrays are adapted to cell length to maintain cell polarity and to help centre the nucleus and cell division ring. Here, we show that length regulation of iMTs is dictated by spatially regulated competition between MT-stabilising Tea2/Tip1/Mal3 (Kinesin-7) and MT-destabilising Klp5/Klp6/Mcp1 (Kinesin-8) complexes at iMT plus ends. During MT growth, the Tea2/Tip1/Mal3 complex remains bound to the plus ends of iMT bundles, thereby restricting access to the plus ends by Klp5/Klp6/Mcp1, which accumulate behind it. At cell ends, Klp5/Klp6/Mcp1 invades the space occupied by the Tea2/Tip1/Tea1 kinesin complex triggering its displacement from iMT plus ends and MT catastrophe. These data show that , whilst an iMT length-dependent model for catastrophe factor accumulation has validity, length control of iMTs is an emergent property reflecting spatially regulated competition between distinct kinesin complexes at the MT plus tip.

Citing Articles

EB3-informed dynamics of the microtubule stabilizing cap during stalled growth.

Kok M, Huber F, Kalisch S, Dogterom M Biophys J. 2024; 124(2):227-244.

PMID: 39604262 PMC: 11788501. DOI: 10.1016/j.bpj.2024.11.3314.


Reliable and robust control of nucleus centering is contingent on nonequilibrium force patterns.

Jain I, Rao M, Tran P iScience. 2023; 26(5):106665.

PMID: 37182105 PMC: 10173738. DOI: 10.1016/j.isci.2023.106665.


A Functional Yeast-Based Screen Identifies the Host Microtubule Cytoskeleton as a Target of Numerous Proteins.

Wevers C, Hohler M, Alcazar-Roman A, Hegemann J, Fleig U Int J Mol Sci. 2023; 24(8).

PMID: 37108781 PMC: 10142024. DOI: 10.3390/ijms24087618.


Multivalent interactions facilitate motor-dependent protein accumulation at growing microtubule plus-ends.

Maan R, Reese L, Volkov V, King M, van der Sluis E, Andrea N Nat Cell Biol. 2022; 25(1):68-78.

PMID: 36536175 PMC: 9859754. DOI: 10.1038/s41556-022-01037-0.


Remote control of microtubule plus-end dynamics and function from the minus-end.

Chen X, Widmer L, Stangier M, Steinmetz M, Stelling J, Barral Y Elife. 2019; 8.

PMID: 31490122 PMC: 6754230. DOI: 10.7554/eLife.48627.


References
1.
Bieling P, Laan L, Schek H, Munteanu E, Sandblad L, Dogterom M . Reconstitution of a microtubule plus-end tracking system in vitro. Nature. 2007; 450(7172):1100-5. DOI: 10.1038/nature06386. View

2.
Grissom P, Fiedler T, Grishchuk E, Nicastro D, West R, McIntosh J . Kinesin-8 from fission yeast: a heterodimeric, plus-end-directed motor that can couple microtubule depolymerization to cargo movement. Mol Biol Cell. 2008; 20(3):963-72. PMC: 2633396. DOI: 10.1091/mbc.e08-09-0979. View

3.
Mayr M, Storch M, Howard J, Mayer T . A non-motor microtubule binding site is essential for the high processivity and mitotic function of kinesin-8 Kif18A. PLoS One. 2011; 6(11):e27471. PMC: 3213134. DOI: 10.1371/journal.pone.0027471. View

4.
Tischer C, Brunner D, Dogterom M . Force- and kinesin-8-dependent effects in the spatial regulation of fission yeast microtubule dynamics. Mol Syst Biol. 2009; 5:250. PMC: 2671921. DOI: 10.1038/msb.2009.5. View

5.
Browning H, Hackney D . The EB1 homolog Mal3 stimulates the ATPase of the kinesin Tea2 by recruiting it to the microtubule. J Biol Chem. 2005; 280(13):12299-304. DOI: 10.1074/jbc.M413620200. View