Jiang Y, Wang K, Xu L, Xu L, Xu Q, Mu Y
Nucleic Acids Res. 2024; 52(18):10951-10964.
PMID: 39180394
PMC: 11472048.
DOI: 10.1093/nar/gkae728.
Deng W, Zheng Z, Chen Y, Yang M, Yan J, Li W
Front Microbiol. 2022; 13:919538.
PMID: 35898907
PMC: 9309504.
DOI: 10.3389/fmicb.2022.919538.
Lemmens L, Tilleman L, De Koning E, Valegard K, Lindas A, Van Nieuwerburgh F
Front Microbiol. 2019; 10:2084.
PMID: 31552000
PMC: 6746942.
DOI: 10.3389/fmicb.2019.02084.
Yeo H, Park Y, Lee J
Nucleic Acids Res. 2017; 45(7):4244-4254.
PMID: 28160603
PMC: 5397183.
DOI: 10.1093/nar/gkx009.
Tanaka K, Iwasaki K, Morimoto T, Matsuse T, Hasunuma T, Takenaka S
BMC Microbiol. 2015; 15:43.
PMID: 25880922
PMC: 4348106.
DOI: 10.1186/s12866-015-0373-0.
Lessons from the modular organization of the transcriptional regulatory network of Bacillus subtilis.
Freyre-Gonzalez J, Manjarrez-Casas A, Merino E, Martinez-Nunez M, Perez-Rueda E, Gutierrez-Rios R
BMC Syst Biol. 2013; 7:127.
PMID: 24237659
PMC: 4225672.
DOI: 10.1186/1752-0509-7-127.
Low concentrations of bile salts induce stress responses and reduce motility in Bacillus cereus ATCC 14579 [corrected].
Kristoffersen S, Ravnum S, Tourasse N, Okstad O, Kolsto A, Davies W
J Bacteriol. 2007; 189(14):5302-13.
PMID: 17496091
PMC: 1951874.
DOI: 10.1128/JB.00239-07.
Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum.
Letek M, Valbuena N, Ramos A, Ordonez E, Gil J, Mateos L
J Bacteriol. 2005; 188(2):409-23.
PMID: 16385030
PMC: 1347311.
DOI: 10.1128/JB.188.2.409-423.2006.
Enhancement of glutamine utilization in Bacillus subtilis through the GlnK-GlnL two-component regulatory system.
Satomura T, Shimura D, Asai K, Sadaie Y, Hirooka K, Fujita Y
J Bacteriol. 2005; 187(14):4813-21.
PMID: 15995196
PMC: 1169493.
DOI: 10.1128/JB.187.14.4813-4821.2005.
Functional constraints of 6-phosphogluconate dehydrogenase (6-PGD) based on sequence and structural information.
Goulielmos G, Eliopoulos E, Loukas M, Tsakas S
J Mol Evol. 2004; 59(3):358-71.
PMID: 15553090
DOI: 10.1007/s00239-004-2630-y.
Intracellular carbon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures.
Dauner M, Sonderegger M, Hochuli M, Szyperski T, Wuthrich K, Hohmann H
Appl Environ Microbiol. 2002; 68(4):1760-71.
PMID: 11916694
PMC: 123836.
DOI: 10.1128/AEM.68.4.1760-1771.2002.
PhcS represses gratuitous expression of phenol-metabolizing enzymes in Comamonas testosteroni R5.
Teramoto M, Harayama S, Watanabe K
J Bacteriol. 2001; 183(14):4227-34.
PMID: 11418563
PMC: 95312.
DOI: 10.1128/JB.183.14.4227-4234.2001.
Regulation of transfer functions by the imp locus of the Streptomyces coelicolor plasmidogenic element SLP1.
Hagege J, Brasch M, Cohen S
J Bacteriol. 1999; 181(19):5976-83.
PMID: 10498709
PMC: 103624.
DOI: 10.1128/JB.181.19.5976-5983.1999.
6-Phosphogluconate dehydrogenase from Lactococcus lactis: a role for arginine residues in binding substrate and coenzyme.
Tetaud E, Hanau S, Wells J, Le Page R, Adams M, Arkison S
Biochem J. 1999; 338 ( Pt 1):55-60.
PMID: 9931298
PMC: 1220024.
Cloning and characterization of transcription of the xylAB operon in Thermoanaerobacter ethanolicus.
Erbeznik M, Dawson K, Strobel H
J Bacteriol. 1998; 180(5):1103-9.
PMID: 9495747
PMC: 106996.
DOI: 10.1128/JB.180.5.1103-1109.1998.
Characterization of glucose-specific catabolite repression-resistant mutants of Bacillus subtilis: identification of a novel hexose:H+ symporter.
Paulsen I, Chauvaux S, Choi P, Saier Jr M
J Bacteriol. 1998; 180(3):498-504.
PMID: 9457850
PMC: 106914.
DOI: 10.1128/JB.180.3.498-504.1998.
CcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis.
Chauvaux S, Paulsen I, Saier Jr M
J Bacteriol. 1998; 180(3):491-7.
PMID: 9457849
PMC: 106913.
DOI: 10.1128/JB.180.3.491-497.1998.
Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis.
Yoshida K, Aoyama D, Ishio I, Shibayama T, Fujita Y
J Bacteriol. 1997; 179(14):4591-8.
PMID: 9226270
PMC: 179296.
DOI: 10.1128/jb.179.14.4591-4598.1997.
Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene.
Mota L
J Bacteriol. 1997; 179(5):1598-608.
PMID: 9045819
PMC: 178872.
DOI: 10.1128/jb.179.5.1598-1608.1997.
Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes.
Bsat N, Chen L, Helmann J
J Bacteriol. 1996; 178(22):6579-86.
PMID: 8932315
PMC: 178545.
DOI: 10.1128/jb.178.22.6579-6586.1996.