» Articles » PMID: 30187829

Size-Dependent Cortical Compaction Induces Metabolic Adaptation in Mesenchymal Stem Cell Aggregates

Overview
Date 2018 Sep 7
PMID 30187829
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

This study reveals that multicellular aggregation induces metabolic reprogramming via mechanical compaction in lieu of formation of a hypoxic core. Utilizing biomechanical knowledge gained from planar culture, we set forth a novel three-dimensional (3D) model of size-dependent cortical compaction and demonstrated its role in metabolic reconfiguration. Ultimately, this study establishes mechanical compaction and its spatial gradients as key regulatory factors and design parameters in the development of 3D human adipose-derived mesenchymal stem cell aggregates.

Citing Articles

Advances in 3D Culture Models to Study Exosomes in Triple-Negative Breast Cancer.

Yousafzai N, El Khalki L, Wang W, Szpendyk J, Sossey-Alaoui K Cancers (Basel). 2024; 16(5).

PMID: 38473244 PMC: 10931050. DOI: 10.3390/cancers16050883.


Efficient expansion and delayed senescence of hUC-MSCs by microcarrier-bioreactor system.

Wang X, Ouyang L, Chen W, Cao Y, Zhang L Stem Cell Res Ther. 2023; 14(1):284.

PMID: 37794520 PMC: 10552362. DOI: 10.1186/s13287-023-03514-1.


Engineering Human Mesenchymal Bodies in a Novel 3D-Printed Microchannel Bioreactor for Extracellular Vesicle Biogenesis.

Jeske R, Chen X, Mulderrig L, Liu C, Cheng W, Zeng O Bioengineering (Basel). 2022; 9(12).

PMID: 36551001 PMC: 9774207. DOI: 10.3390/bioengineering9120795.


Engineering extracellular vesicles by three-dimensional dynamic culture of human mesenchymal stem cells.

Yuan X, Sun L, Jeske R, Nkosi D, York S, Liu Y J Extracell Vesicles. 2022; 11(6):e12235.

PMID: 35716062 PMC: 9206229. DOI: 10.1002/jev2.12235.


Immunomodulatory properties of mesenchymal stromal/stem cells: The link with metabolism.

Li H, Dai H, Li J J Adv Res. 2022; 45:15-29.

PMID: 35659923 PMC: 10006530. DOI: 10.1016/j.jare.2022.05.012.


References
1.
Kim J, Ma T . Bioreactor strategy in bone tissue engineering: pre-culture and osteogenic differentiation under two flow configurations. Tissue Eng Part A. 2012; 18(21-22):2354-64. PMC: 3482853. DOI: 10.1089/ten.TEA.2011.0674. View

2.
Takebe T, Enomura M, Yoshizawa E, Kimura M, Koike H, Ueno Y . Vascularized and Complex Organ Buds from Diverse Tissues via Mesenchymal Cell-Driven Condensation. Cell Stem Cell. 2015; 16(5):556-65. DOI: 10.1016/j.stem.2015.03.004. View

3.
Kim I, Ko J, Lee H, Do S, Park K . Mesenchymal cells condensation-inducible mesh scaffolds for cartilage tissue engineering. Biomaterials. 2016; 85:18-29. DOI: 10.1016/j.biomaterials.2016.01.048. View

4.
Faubert B, Vincent E, Griss T, Samborska B, Izreig S, Svensson R . Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1α. Proc Natl Acad Sci U S A. 2014; 111(7):2554-9. PMC: 3932920. DOI: 10.1073/pnas.1312570111. View

5.
Tsai A, Liu Y, Yuan X, Ma T . Compaction, fusion, and functional activation of three-dimensional human mesenchymal stem cell aggregate. Tissue Eng Part A. 2015; 21(9-10):1705-19. PMC: 4426301. DOI: 10.1089/ten.TEA.2014.0314. View