» Articles » PMID: 30169561

FastSpar: Rapid and Scalable Correlation Estimation for Compositional Data

Overview
Journal Bioinformatics
Specialty Biology
Date 2018 Sep 1
PMID 30169561
Citations 117
Authors
Affiliations
Soon will be listed here.
Abstract

Summary: A common goal of microbiome studies is the elucidation of community composition and member interactions using counts of taxonomic units extracted from sequence data. Inference of interaction networks from sparse and compositional data requires specialized statistical approaches. A popular solution is SparCC, however its performance limits the calculation of interaction networks for very high-dimensional datasets. Here we introduce FastSpar, an efficient and parallelizable implementation of the SparCC algorithm which rapidly infers correlation networks and calculates P-values using an unbiased estimator. We further demonstrate that FastSpar reduces network inference wall time by 2-3 orders of magnitude compared to SparCC.

Availability And Implementation: FastSpar source code, precompiled binaries and platform packages are freely available on GitHub: github.com/scwatts/FastSpar.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Citing Articles

Population-level analyses identify host and environmental variables influencing the vaginal microbiome.

Qin L, Sun T, Li X, Zhao S, Liu Z, Zhang C Signal Transduct Target Ther. 2025; 10(1):64.

PMID: 39966341 PMC: 11836416. DOI: 10.1038/s41392-025-02152-8.


Spatiotemporal dynamics reveal high turnover and contrasting assembly processes in fungal communities across contiguous habitats of tropical forests.

Lin C, Lin Y, Liu Y, Lu M, Ke H, Tsai I Environ Microbiome. 2025; 20(1):23.

PMID: 39955594 PMC: 11830174. DOI: 10.1186/s40793-025-00683-9.


Microbes in reconstructive restoration: Divergence in constructed and natural tree island soil fungi affects tree growth.

Kiesewetter K, Rawstern A, Cline E, Ortiz G, Santamaria F, Coronado-Molina C Ecol Appl. 2025; 35(1):e70007.

PMID: 39950593 PMC: 11827290. DOI: 10.1002/eap.70007.


A metagenome-wide study of the gut virome in chronic kidney disease.

Zhang P, Guo R, Ma S, Jiang H, Yan Q, Li S Theranostics. 2025; 15(5):1642-1661.

PMID: 39897560 PMC: 11780533. DOI: 10.7150/thno.101601.


Characterizing the microbiome recruited by the endangered plant in phosphorus-deficient acidic soil.

Li J, Tang G, Liu H, Luo X, Wang J Front Microbiol. 2025; 15:1439446.

PMID: 39881984 PMC: 11774962. DOI: 10.3389/fmicb.2024.1439446.


References
1.
Friedman J, Alm E . Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012; 8(9):e1002687. PMC: 3447976. DOI: 10.1371/journal.pcbi.1002687. View

2.
Preheim S, Perrotta A, Martin-Platero A, Gupta A, Alm E . Distribution-based clustering: using ecology to refine the operational taxonomic unit. Appl Environ Microbiol. 2013; 79(21):6593-603. PMC: 3811501. DOI: 10.1128/AEM.00342-13. View

3.
He Q, Gao Y, Jie Z, Yu X, Laursen J, Xiao L . Two distinct metacommunities characterize the gut microbiota in Crohn's disease patients. Gigascience. 2017; 6(7):1-11. PMC: 5624284. DOI: 10.1093/gigascience/gix050. View

4.
Ju F, Zhang T . 16S rRNA gene high-throughput sequencing data mining of microbial diversity and interactions. Appl Microbiol Biotechnol. 2015; 99(10):4119-29. DOI: 10.1007/s00253-015-6536-y. View

5.
Phipson B, Smyth G . Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn. Stat Appl Genet Mol Biol. 2010; 9:Article39. DOI: 10.2202/1544-6115.1585. View