» Articles » PMID: 3016709

Detection of Restriction Fragment Length Polymorphisms at the Centromeres of Human Chromosomes by Using Chromosome-specific Alpha Satellite DNA Probes: Implications for Development of Centromere-based Genetic Linkage Maps

Overview
Specialty Science
Date 1986 Aug 1
PMID 3016709
Citations 54
Authors
Affiliations
Soon will be listed here.
Abstract

We describe a general strategy for the detection of high-frequency restriction fragment length polymorphisms in the centromeric regions of human chromosomes by molecular analysis of alpha satellite DNA, a diverse family of tandemly repeated DNA located near the centromeres of all human chromosomes. To illustrate this strategy, cloned alpha satellite repeats isolated from two human chromosomes, 17 and X, have been used under high-stringency conditions that take advantage of the chromosome-specific organization of this divergent repeated DNA family. Multiple high-frequency restriction fragment length polymorphisms are described for the centromeric region of both chromosome 17 and X chromosome. Mendelian inheritance of the variants is demonstrated. The X-linked alpha satellite polymorphisms in particular are highly informative and constitute a virtually unique centromeric DNA marker for each X chromosome examined. Since the strategy we describe is a general one, the alpha satellite family of DNA should provide a rich source of molecular variation in the human genome and should contribute to the development of centromere-based genetic linkage maps of human chromosomes.

Citing Articles

Telomere-to-telomere assembly of diploid chromosomes with Verkko.

Rautiainen M, Nurk S, Walenz B, Logsdon G, Porubsky D, Rhie A Nat Biotechnol. 2023; 41(10):1474-1482.

PMID: 36797493 PMC: 10427740. DOI: 10.1038/s41587-023-01662-6.


The Role of Human Centromeric RNA in Chromosome Stability.

Leclerc S, Kitagawa K Front Mol Biosci. 2021; 8:642732.

PMID: 33869284 PMC: 8044762. DOI: 10.3389/fmolb.2021.642732.


Improved contiguity of the threespine stickleback genome using long-read sequencing.

Nath S, Shaw D, White M G3 (Bethesda). 2021; 11(2).

PMID: 33598708 PMC: 8022941. DOI: 10.1093/g3journal/jkab007.


Centromere Repeats: Hidden Gems of the Genome.

Hartley G, ONeill R Genes (Basel). 2019; 10(3).

PMID: 30884847 PMC: 6471113. DOI: 10.3390/genes10030223.


Alpha satellite DNA biology: finding function in the recesses of the genome.

McNulty S, Sullivan B Chromosome Res. 2018; 26(3):115-138.

PMID: 29974361 PMC: 6121732. DOI: 10.1007/s10577-018-9582-3.


References
1.
Smith G . Unequal crossover and the evolution of multigene families. Cold Spring Harb Symp Quant Biol. 1974; 38:507-13. DOI: 10.1101/sqb.1974.038.01.055. View

2.
Devilee P, Slagboom P, Cornelisse C, Pearson P . Sequence heterogeneity within the human alphoid repetitive DNA family. Nucleic Acids Res. 1986; 14(5):2059-73. PMC: 339643. DOI: 10.1093/nar/14.5.2059. View

3.
Southern E . Long range periodicities in mouse satellite DNA. J Mol Biol. 1975; 94(1):51-69. DOI: 10.1016/0022-2836(75)90404-0. View

4.
Jacobs P . Human chromosome heteromorphisms (variants). Prog Med Genet. 1977; 2:251-74. DOI: 10.1016/0378-1119(77)90004-x. View

5.
Manuelidis L . Chromosomal localization of complex and simple repeated human DNAs. Chromosoma. 1978; 66(1):23-32. DOI: 10.1007/BF00285813. View