» Articles » PMID: 30158526

In Vivo Phosphoproteomics Reveals Kinase Activity Profiles That Predict Treatment Outcome in Triple-negative Breast Cancer

Abstract

Triple-negative breast cancer (TNBC) lacks prognostic and predictive markers. Here, we use high-throughput phosphoproteomics to build a functional TNBC taxonomy. A cluster of 159 phosphosites is upregulated in relapsed cases of a training set (n = 34 patients), with 11 hyperactive kinases accounting for this phosphoprofile. A mass-spectrometry-to-immunohistochemistry translation step, assessing 2 independent validation sets, reveals 6 kinases with preserved independent prognostic value. The kinases split the validation set into two patterns: one without hyperactive kinases being associated with a >90% relapse-free rate, and the other one showing ≥1 hyperactive kinase and being associated with an up to 9.5-fold higher relapse risk. Each kinase pattern encompasses different mutational patterns, simplifying mutation-based taxonomy. Drug regimens designed based on these 6 kinases show promising antitumour activity in TNBC cell lines and patient-derived xenografts. In summary, the present study elucidates phosphosites and kinases implicated in TNBC and suggests a target-based clinical classification system for TNBC.

Citing Articles

Proteogenomic characterization of difficult-to-treat breast cancer with tumor cells enriched through laser microdissection.

Raj-Kumar P, Lin X, Liu T, Sturtz L, Gritsenko M, Petyuk V Breast Cancer Res. 2024; 26(1):76.

PMID: 38745208 PMC: 11094977. DOI: 10.1186/s13058-024-01835-4.


Distribution of PD-L1, TROP2 and HER2- "lowness" in early triple-negative breast cancer: an opportunity for treatment de-escalation.

Bueno M, Mouron S, Caleiras E, Martinez M, Manso L, Colomer R Clin Transl Oncol. 2023; 26(5):1273-1279.

PMID: 37851244 PMC: 11026281. DOI: 10.1007/s12094-023-03329-9.


Omics-Based Investigations of Breast Cancer.

Neagu A, Whitham D, Bruno P, Morrissiey H, Darie C, Darie C Molecules. 2023; 28(12).

PMID: 37375323 PMC: 10302907. DOI: 10.3390/molecules28124768.


Quantitative proteomics and phosphoproteomics of urinary extracellular vesicles define putative diagnostic biosignatures for Parkinson's disease.

Hadisurya M, Li L, Kuwaranancharoen K, Wu X, Lee Z, Alcalay R Commun Med (Lond). 2023; 3(1):64.

PMID: 37165152 PMC: 10172329. DOI: 10.1038/s43856-023-00294-w.


Principles of phosphoproteomics and applications in cancer research.

Higgins L, Gerdes H, Cutillas P Biochem J. 2023; 480(6):403-420.

PMID: 36961757 PMC: 10212522. DOI: 10.1042/BCJ20220220.


References
1.
Thingholm T, Jensen O, Larsen M . Analytical strategies for phosphoproteomics. Proteomics. 2009; 9(6):1451-68. DOI: 10.1002/pmic.200800454. View

2.
Dann S, Golas J, Miranda M, Shi C, Wu J, Jin G . p120 catenin is a key effector of a Ras-PKCɛ oncogenic signaling axis. Oncogene. 2013; 33(11):1385-94. DOI: 10.1038/onc.2013.91. View

3.
Zhou H, Ye M, Dong J, Corradini E, Cristobal A, Heck A . Robust phosphoproteome enrichment using monodisperse microsphere-based immobilized titanium (IV) ion affinity chromatography. Nat Protoc. 2013; 8(3):461-80. DOI: 10.1038/nprot.2013.010. View

4.
Steiner C, Ducret A, Tille J, Thomas M, McKee T, Rubbia-Brandt L . Applications of mass spectrometry for quantitative protein analysis in formalin-fixed paraffin-embedded tissues. Proteomics. 2013; 14(4-5):441-51. PMC: 4265304. DOI: 10.1002/pmic.201300311. View

5.
Modi S, Seidman A, Dickler M, Moasser M, DAndrea G, Moynahan M . A phase II trial of imatinib mesylate monotherapy in patients with metastatic breast cancer. Breast Cancer Res Treat. 2005; 90(2):157-63. DOI: 10.1007/s10549-004-3974-0. View