» Articles » PMID: 30150412

Feedback-mediated Signal Conversion Promotes Viral Fitness

Overview
Specialty Science
Date 2018 Aug 29
PMID 30150412
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

A fundamental signal-processing problem is how biological systems maintain phenotypic states (i.e., canalization) long after degradation of initial catalyst signals. For example, to efficiently replicate, herpesviruses (e.g., human cytomegalovirus, HCMV) rapidly counteract cell-mediated silencing using transactivators packaged in the tegument of the infecting virion particle. However, the activity of these tegument transactivators is inherently transient-they undergo immediate proteolysis but delayed synthesis-and how transient activation sustains lytic viral gene expression despite cell-mediated silencing is unclear. By constructing a two-color, conditional-feedback HCMV mutant, we find that positive feedback in HCMV's immediate-early 1 (IE1) protein is of sufficient strength to sustain HCMV lytic expression. Single-cell time-lapse imaging and mathematical modeling show that IE1 positive feedback converts transient transactivation signals from tegument pp71 proteins into sustained lytic expression, which is obligate for efficient viral replication, whereas attenuating feedback decreases fitness by promoting a reversible silenced state. Together, these results identify a regulatory mechanism enabling herpesviruses to sustain expression despite transient activation signals-akin to early electronic transistors-and expose a potential target for therapeutic intervention.

Citing Articles

Specific RNA structures in the 5' untranslated region of the human cytomegalovirus major immediate early transcript are critical for efficient virus replication.

Dickmander B, Hale A, Sanders W, Lenarcic E, Ziehr B, Moorman N mBio. 2024; 15(2):e0262123.

PMID: 38165154 PMC: 10865803. DOI: 10.1128/mbio.02621-23.


Computational modeling of protracted HCMV replication using genome substrates and protein temporal profiles.

Monti C, Mokry R, Schumacher M, Dash R, Terhune S Proc Natl Acad Sci U S A. 2022; 119(35):e2201787119.

PMID: 35994667 PMC: 9437303. DOI: 10.1073/pnas.2201787119.


Disrupting autorepression circuitry generates "open-loop lethality" to yield escape-resistant antiviral agents.

Chaturvedi S, Pablo M, Wolf M, Rosas-Rivera D, Calia G, Kumar A Cell. 2022; 185(12):2086-2102.e22.

PMID: 35561685 PMC: 9097017. DOI: 10.1016/j.cell.2022.04.022.


A Tale of Usurpation and Subversion: SUMO-Dependent Integrity of Promyelocytic Leukemia Nuclear Bodies at the Crossroad of Infection and Immunity.

Patra U, Muller S Front Cell Dev Biol. 2021; 9:696234.

PMID: 34513832 PMC: 8430037. DOI: 10.3389/fcell.2021.696234.


Editorial: Cytomegalovirus Pathogenesis and Host Interactions.

Poole E, Nevels M Front Cell Infect Microbiol. 2021; 11:711551.

PMID: 34307201 PMC: 8293988. DOI: 10.3389/fcimb.2021.711551.


References
1.
MacArthur B, Sevilla A, Lenz M, Muller F, Schuldt B, Schuppert A . Nanog-dependent feedback loops regulate murine embryonic stem cell heterogeneity. Nat Cell Biol. 2012; 14(11):1139-47. PMC: 3507454. DOI: 10.1038/ncb2603. View

2.
Tavalai N, Papior P, Rechter S, Leis M, Stamminger T . Evidence for a role of the cellular ND10 protein PML in mediating intrinsic immunity against human cytomegalovirus infections. J Virol. 2006; 80(16):8006-18. PMC: 1563799. DOI: 10.1128/JVI.00743-06. View

3.
Levine J, Fontes M, Dworkin J, Elowitz M . Pulsed feedback defers cellular differentiation. PLoS Biol. 2012; 10(1):e1001252. PMC: 3269414. DOI: 10.1371/journal.pbio.1001252. View

4.
Ahrends R, Ota A, Kovary K, Kudo T, Park B, Teruel M . Controlling low rates of cell differentiation through noise and ultrahigh feedback. Science. 2014; 344(6190):1384-9. PMC: 4733388. DOI: 10.1126/science.1252079. View

5.
Orchard R, Kittisopikul M, Altschuler S, Wu L, Suel G, Alto N . Identification of F-actin as the dynamic hub in a microbial-induced GTPase polarity circuit. Cell. 2012; 148(4):803-15. PMC: 3368334. DOI: 10.1016/j.cell.2011.11.063. View