Coercivity Modulation in Fe-Cu Pseudo-Ordered Porous Thin Films Controlled by an Applied Voltage: A Sustainable, Energy-Efficient Approach to Magnetoelectrically Driven Materials
Overview
Authors
Affiliations
Fe-Cu films with pseudo-ordered, hierarchical porosity are prepared by a simple, two-step procedure that combines colloidal templating (using sub-micrometer-sized polystyrene spheres) with electrodeposition. The porosity degree of these films, estimated by ellipsometry measurements, is as high as 65%. The resulting magnetic properties can be controlled at room temperature using an applied electric field generated through an electric double layer in an anhydrous electrolyte. This material shows a remarkable 25% voltage-driven coercivity reduction upon application of negative voltages, with excellent reversibility when a positive voltage is applied, and a short recovery time. The pronounced reduction of coercivity is mainly ascribed to electrostatic charge accumulation at the surface of the porous alloy, which occurs over a large fraction of the electrodeposited material due to its high surface-area-to-volume ratio. The emergence of a hierarchical porosity is found to be crucial because it promotes the infiltration of the electrolyte into the structure of the film. The observed effects make this material a promising candidate to boost energy efficiency in magnetoelectrically actuated devices.
Robbennolt S, Menendez E, Quintana A, Gomez A, Auffret S, Baltz V Sci Rep. 2019; 9(1):10804.
PMID: 31346196 PMC: 6658663. DOI: 10.1038/s41598-019-46618-6.
Dislaki E, Robbennolt S, Campoy-Quiles M, Nogues J, Pellicer E, Sort J Adv Sci (Weinh). 2018; 5(8):1800499.
PMID: 30128259 PMC: 6096991. DOI: 10.1002/advs.201800499.