The Effects of Balance Training on Balance Performance and Functional Outcome Measures Following Total Knee Arthroplasty: A Systematic Review and Meta-Analysis
Overview
Authors
Affiliations
Background: Several studies have examined the effects of balance training in elderly individuals following total knee arthroplasty (TKA), although findings appear to be equivocal.
Objectives: This systematic review and meta-analysis examined the effects of balance training on walking capacity, balance-specific performance and other functional outcome measures in elderly individuals following TKA.
Methods: Data sources: Pubmed, PEDro, Cinahl, SportDiscus, Scopus. Eligibility criteria: Data were aggregated following the population-intervention-comparison-outcome (PICO) principles. Eligibility criteria included: (1) randomised controlled trials; (2) studies with comparative groups; (3) training interventions were incorporated post-TKA; and (4) outcome measures included walking capacity, balance-specific performance measures, subjective measures of physical function and pain and knee range-of-motion.
Participants: Elderly individuals (65 + years) who underwent total knee arthroplasty.
Interventions: Balance interventions that consisted of balance exercises, which were compared to control interventions that did not involve balance exercises, or to a lesser extent. Participants also undertook usual physiotherapy care in conjunction with either the balance and/or control intervention. The intervention duration ranged from 4 to 32 weeks with outcome measures reported immediately following the intervention. Of these, four studies also reported follow-up measures ranging from 6 to 12 months post-interventions. Study appraisal: PEDro scale.
Synthesis Methods: Quantitative analysis was conducted by generating forest plots to report on standardised mean differences (SMD; i.e. effect size), test statistics for statistical significance (i.e. Z values) and inter-trial heterogeneity by inspecting I. A meta-regression was also conducted to determine whether training duration predicted the magnitude of SMD.
Results: Balance training exhibited significantly greater improvement in walking capacity (SMD = 0.57; Z = 6.30; P < 0.001; I = 35%), balance-specific performance measures (SMD = 1.19; Z = 7.33; P < 0.001; I = 0%) and subjective measures of physical function (SMD = 0.46; Z = 4.19; P < 0.001; I = 0%) compared to conventional training immediately post-intervention. However, there were no differences in subjective measures of pain (SMD = 0.77; Z = 1.63; P > 0.05; I = 95%) and knee range-of-motion (SMD = 0.05; Z = 0.39; P > 0.05; I = 1%) between interventions. At the 6- to 12-month follow-up period, improvement in combined measures of walking capacity and balance performance (SMD = 041; Z = 3.55; P < 0.001; I = 0%) were significantly greater for balance training compared to conventional training, although no differences were observed for subjective measures of physical function and pain (SMD = 0.26; Z = 2.09; P > 0.05; I = 0%). Finally, the training duration significantly predicted subjective measures of pain and physical function (r = 0.85; standardised β = 0.92; P < 0.001), although this was not observed for walking capacity and balance-specific performance measures (r = 0.02; standardised β = 0.13; P = 0.48).
Limitations: A number of outcome measures indicated high inter-trial heterogeneity and only articles published in English were included.
Conclusion: Balance training improved walking capacity, balance-specific performance and functional outcome measures for elderly individuals following TKA. These findings may improve clinical decision-making for appropriate post-TKA exercise prescription to minimise falls risks and optimise physical function.
An J, Cheon S, Lee B Medicina (Kaunas). 2024; 60(9).
PMID: 39336430 PMC: 11433847. DOI: 10.3390/medicina60091389.
Kacmaz K, Unver B, Karatosun V Arch Orthop Trauma Surg. 2024; 144(8):3669-3675.
PMID: 39196402 DOI: 10.1007/s00402-024-05520-1.
Ozden F, Uysal I, Tumturk I, Ozkeskin M, Ozyer F J Orthop. 2024; 54:86-89.
PMID: 38560588 PMC: 10972762. DOI: 10.1016/j.jor.2024.03.013.
Zhang Z, Tao H, Zhao Y, Xiang W, Cao H, Tao F J Orthop Surg Res. 2023; 18(1):538.
PMID: 37507811 PMC: 10375624. DOI: 10.1186/s13018-023-04041-8.
Knee Loading With Blood Flow Restriction Can Enhance Recovery After Total Knee Arthroplasty.
De Renty C, Forelli F, Mazeas J, Kakavas G, Hewett T, Korakakis V Cureus. 2023; 15(4):e37895.
PMID: 37214015 PMC: 10199744. DOI: 10.7759/cureus.37895.