» Articles » PMID: 30092825

Epigenome-wide DNA Methylation Regulates Cardinal Pathological Features of Psoriasis

Overview
Publisher Biomed Central
Specialty Genetics
Date 2018 Aug 11
PMID 30092825
Citations 50
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Psoriasis is a chronic inflammatory autoimmune skin disorder. Several studies suggested psoriasis to be a complex multifactorial disease, but the exact triggering factor is yet to be determined. Evidences suggest that in addition to genetic factors, epigenetic reprogramming is also involved in psoriasis development. Major histopathological features, like increased proliferation and abnormal differentiation of keratinocytes, and immune cell infiltrations are characteristic marks of psoriatic skin lesions. Following therapy, histopathological features as well as aberrant DNA methylation reversed to normal levels. To understand the role of DNA methylation in regulating these crucial histopathologic features, we investigated the genome-wide DNA methylation profile of psoriasis patients with different histopathological features.

Results: Genome-wide DNA methylation profiling of psoriatic and adjacent normal skin tissues identified several novel differentially methylated regions associated with psoriasis. Differentially methylated CpGs were significantly enriched in several psoriasis susceptibility (PSORS) regions and epigenetically regulated the expression of key pathogenic genes, even with low-CpG promoters. Top differentially methylated genes overlapped with PSORS regions including S100A9, SELENBP1, CARD14, KAZN and PTPN22 showed inverse correlation between methylation and gene expression. We identified differentially methylated genes associated with characteristic histopathological features in psoriasis. Psoriatic skin with Munro's microabscess, a distinctive feature in psoriasis including parakeratosis and neutrophil accumulation at the stratum corneum, was enriched with differentially methylated genes involved in neutrophil chemotaxis. Rete peg elongation and focal hypergranulosis were also associated with epigenetically regulated genes, supporting the reversible nature of these characteristic features during remission and relapse of the lesions.

Conclusion: Our study, for the first time, indicated the possible involvement of DNA methylation in regulating the cardinal pathophysiological features in psoriasis. Common genes involved in regulation of these pathologies may be used to develop drugs for better clinical management of psoriasis.

Citing Articles

Histone Modifications and DNA Methylation in Psoriasis: A Cellular Perspective.

Pan J, Chen S, Chen X, Song Y, Cheng H Clin Rev Allergy Immunol. 2025; 68(1):6.

PMID: 39871086 DOI: 10.1007/s12016-024-09014-1.


Biomarkers in Ataxia-Telangiectasia: a Systematic Review.

Tiet M, Gutu B, Springall-Jeggo P, Coman D, Willemsen M, Van Os N J Neurol. 2025; 272(2):110.

PMID: 39812834 PMC: 11735505. DOI: 10.1007/s00415-024-12766-7.


Psoriasis and Seasonality: Exploring the Genetic and Epigenetic Interactions.

Niedzwiedz M, Skibinska M, Ciazynska M, Noweta M, Czerwinska A, Krzyscin J Int J Mol Sci. 2024; 25(21).

PMID: 39519223 PMC: 11547062. DOI: 10.3390/ijms252111670.


The Expression of Cytokines and Chemokines Potentially Distinguishes Mild and Severe Psoriatic Non-Lesional and Resolved Skin from Healthy Skin and Indicates Different Stages of Inflammation.

Bozo R, Flink L, Ambrus B, Ghaffarinia A, Koncz B, Kui R Int J Mol Sci. 2024; 25(20).

PMID: 39457071 PMC: 11509107. DOI: 10.3390/ijms252011292.


Promising strategies in natural products treatments of psoriasis-update.

Le S, Wu X, Dou Y, Song T, Fu H, Luo H Front Med (Lausanne). 2024; 11:1386783.

PMID: 39296901 PMC: 11408484. DOI: 10.3389/fmed.2024.1386783.


References
1.
Yooyongsatit S, Ruchusatsawat K, Noppakun N, Hirankarn N, Mutirangura A, Wongpiyabovorn J . Patterns and functional roles of LINE-1 and Alu methylation in the keratinocyte from patients with psoriasis vulgaris. J Hum Genet. 2015; 60(7):349-55. DOI: 10.1038/jhg.2015.33. View

2.
Sandoval-Talamantes A, Brito-Luna M, Fafutis-Morris M, Villanueva-Quintero D, Graciano-Machuca O, Ramirez-Duenas M . The 3'UTR 1188A/C polymorphism of IL-12p40 is not associated with susceptibility for developing plaque psoriasis in Mestizo population from western Mexico. Immunol Lett. 2014; 163(2):221-6. DOI: 10.1016/j.imlet.2014.10.004. View

3.
Chandra A, Lahiri A, Senapati S, Basu B, Ghosh S, Mukhopadhyay I . Increased Risk of Psoriasis due to combined effect of HLA-Cw6 and LCE3 risk alleles in Indian population. Sci Rep. 2016; 6:24059. PMC: 4822143. DOI: 10.1038/srep24059. View

4.
Wang H, Iakova P, Wilde M, Welm A, Goode T, Roesler W . C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol Cell. 2001; 8(4):817-28. DOI: 10.1016/s1097-2765(01)00366-5. View

5.
Li L, Dahiya R . MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002; 18(11):1427-31. DOI: 10.1093/bioinformatics/18.11.1427. View