» Articles » PMID: 30023686

Antimicrobial Activity Enhancement of Poly(ether Sulfone) Membranes by in Situ Growth of ZnO Nanorods

Overview
Journal ACS Omega
Specialty Chemistry
Date 2018 Jul 20
PMID 30023686
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Composite poly(ether sulfone) membranes integrated with ZnO nanostructures either directly blended or grown in situ have enhanced antibacterial activity with improved functionality in reducing the biofouling in water treatment applications. The pore structure and surface properties of the composite were studied to investigate the effect of the addition of ZnO nanostructures. The hydrophilicity of the blended membranes increased with a higher content of ZnO nanoparticles in the membrane (2-6%), which could be further controlled by varying the growth conditions of ZnO nanorods on the polymer surface. Improved water flux, bovine serum albumin rejection, and inhibition of bacterial growth under visible light irradiation was observed for the membranes decorated with ZnO nanorods compared to those in the membranes simply blended with ZnO nanoparticles. No regrowth of was recorded even 2 days after the incubation.

Citing Articles

Nanopriming Action of Microwave-Assisted Biofunctionalized ZnO Nanoparticles to Enhance the Growth under Moisture Stress in .

Kalimuthu R, Meenachi Sellan K, Antony D, Rajaprakasam S, Chokkalingam V, Chidambaram P ACS Omega. 2023; 8(31):28143-28155.

PMID: 37576682 PMC: 10413846. DOI: 10.1021/acsomega.3c01329.


Interaction between microorganisms and dental material surfaces: general concepts and research progress.

Tu Y, Ren H, He Y, Ying J, Chen Y J Oral Microbiol. 2023; 15(1):2196897.

PMID: 37035450 PMC: 10078137. DOI: 10.1080/20002297.2023.2196897.


Antifouling and Antimicrobial Study of Nanostructured Mixed-Matrix Membranes for Arsenic Filtration.

Siddique T, Gangadoo S, Pham D, Dutta N, Choudhury N Nanomaterials (Basel). 2023; 13(4).

PMID: 36839105 PMC: 9964044. DOI: 10.3390/nano13040738.


Formation of a ZnO nanorods-patterned coating with strong bactericidal capability and quantitative evaluation of the contribution of nanorods-derived puncture and ROS-derived killing.

Ye J, Li B, Li M, Zheng Y, Wu S, Han Y Bioact Mater. 2021; 11:181-191.

PMID: 34938922 PMC: 8665260. DOI: 10.1016/j.bioactmat.2021.09.019.


Preparation of Thin-Film Composite Nanofiltration Membranes Doped with N- and Cl-Functionalized Graphene Oxide for Water Desalination.

Garcia-Picazo F, Perez-Sicairos S, Fimbres-Weihs G, Lin S, Salazar-Gastelum M, Trujillo-Navarrete B Polymers (Basel). 2021; 13(10).

PMID: 34070156 PMC: 8158488. DOI: 10.3390/polym13101637.


References
1.
He L, Liu Y, Mustapha A, Lin M . Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res. 2010; 166(3):207-15. DOI: 10.1016/j.micres.2010.03.003. View

2.
Nocker A, Cheung C, Camper A . Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods. 2006; 67(2):310-20. DOI: 10.1016/j.mimet.2006.04.015. View

3.
Li M, Lin D, Zhu L . Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ Pollut. 2012; 173:97-102. DOI: 10.1016/j.envpol.2012.10.026. View

4.
Han J, Qiu W, Gao W . Potential dissolution and photo-dissolution of ZnO thin films. J Hazard Mater. 2010; 178(1-3):115-22. DOI: 10.1016/j.jhazmat.2010.01.050. View

5.
Jones N, Ray B, Ranjit K, Manna A . Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 2007; 279(1):71-6. DOI: 10.1111/j.1574-6968.2007.01012.x. View