» Articles » PMID: 29985478

Meganuclease Targeting of PCSK9 in Macaque Liver Leads to Stable Reduction in Serum Cholesterol

Overview
Journal Nat Biotechnol
Specialty Biotechnology
Date 2018 Jul 10
PMID 29985478
Citations 65
Authors
Affiliations
Soon will be listed here.
Abstract

Clinical translation of in vivo genome editing to treat human genetic diseases requires thorough preclinical studies in relevant animal models to assess safety and efficacy. A promising approach to treat hypercholesterolemia is inactivating the secreted protein PCSK9, an antagonist of the LDL receptor. Here we show that single infusions in six non-human primates of adeno-associated virus vector expressing an engineered meganuclease targeting PCSK9 results in dose-dependent disruption of PCSK9 in liver, as well as a stable reduction in circulating PCSK9 and serum cholesterol. Animals experienced transient, asymptomatic elevations of serum transaminases owing to the formation of T cells against the transgene product. Vector DNA and meganuclease expression declined rapidly, leaving stable populations of genome-edited hepatocytes. A second-generation PCSK9-specific meganuclease showed reduced off-target cleavage. These studies demonstrate efficient, physiologically relevant in vivo editing in non-human primates, and highlight safety considerations for clinical translation.

Citing Articles

Plug-and-play assembly of biodegradable ionizable lipids for potent mRNA delivery and gene editing .

Han X, Xu Y, Ricciardi A, Xu J, Palanki R, Chowdhary V bioRxiv. 2025; .

PMID: 40060499 PMC: 11888472. DOI: 10.1101/2025.02.25.640222.


Branched endosomal disruptor (BEND) lipids mediate delivery of mRNA and CRISPR-Cas9 ribonucleoprotein complex for hepatic gene editing and T cell engineering.

Padilla M, Mrksich K, Wang Y, Haley R, Li J, Han E Nat Commun. 2025; 16(1):996.

PMID: 39856035 PMC: 11759712. DOI: 10.1038/s41467-024-55137-6.


The Emerging Role of PCSK9 in the Pathogenesis of Alzheimer's Disease: A Possible Target for the Disease Treatment.

Testa G, Giannelli S, Staurenghi E, Cecci R, Floro L, Gamba P Int J Mol Sci. 2025; 25(24.

PMID: 39769398 PMC: 11727734. DOI: 10.3390/ijms252413637.


Optimization of the activity and biodegradability of ionizable lipids for mRNA delivery via directed chemical evolution.

Han X, Alameh M, Xu Y, Palanki R, El-Mayta R, Dwivedi G Nat Biomed Eng. 2024; 8(11):1412-1424.

PMID: 39578640 DOI: 10.1038/s41551-024-01267-7.


A temperature-sensitive and less immunogenic Sendai virus for efficient gene editing.

Stevens C, Carmichael J, Watkinson R, Kowdle S, Reis R, Hamane K J Virol. 2024; 98(12):e0083224.

PMID: 39494910 PMC: 11650993. DOI: 10.1128/jvi.00832-24.


References
1.
Horton J, Cohen J, Hobbs H . Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci. 2007; 32(2):71-7. PMC: 2711871. DOI: 10.1016/j.tibs.2006.12.008. View

2.
Sievers F, Wilm A, Dineen D, Gibson T, Karplus K, Li W . Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011; 7:539. PMC: 3261699. DOI: 10.1038/msb.2011.75. View

3.
Nelson C, Hakim C, Ousterout D, Thakore P, Moreb E, Castellanos Rivera R . In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016; 351(6271):403-7. PMC: 4883596. DOI: 10.1126/science.aad5143. View

4.
Girardot C, Scholtalbers J, Sauer S, Su S, Furlong E . Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers. BMC Bioinformatics. 2016; 17(1):419. PMC: 5055726. DOI: 10.1186/s12859-016-1284-2. View

5.
Yin H, Song C, Suresh S, Wu Q, Walsh S, Rhym L . Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat Biotechnol. 2017; 35(12):1179-1187. PMC: 5901668. DOI: 10.1038/nbt.4005. View