» Articles » PMID: 29973611

Large Second Harmonic Generation in Alloyed TMDs and Boron Nitride Nanostructures

Overview
Journal Sci Rep
Specialty Science
Date 2018 Jul 6
PMID 29973611
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

First principles methods are used to explicitly calculate the nonlinear susceptibility (χ(2ω, ω, ω)) representing the second harmonic generation (SHG) of two dimensional semiconducting materials, namely transition metal dichalcogenides (TMDs) and Boron Nitride (BN). It is found that alloying TMDs improves their second harmonic response, with MoTeS alloys exhibiting the highest of all hexagonal alloys at low photon energies. Moreover, careful examination of the relationship between the concentration of Se in MoSeS alloys shows that the SHG intensity can be tuned by modifying the stoichiometry. In addition, materials with curvature can have large second harmonic susceptibility. Of all the calculated monolayer structures, the hypothetical TMD Haeckelites NbSSe and NbTaS exhibit the highest χ, while one of the porous 3D structures constructed from 2D hBN exhibits a larger χ than known large band gap 3-D materials.

Citing Articles

Strong chiroptical nonlinearity in coherently stacked boron nitride nanotubes.

Ma C, Ma C, Liu C, Guo Q, Huang C, Yao G Nat Nanotechnol. 2024; 19(9):1299-1305.

PMID: 38844662 DOI: 10.1038/s41565-024-01685-3.


Superalkali nature of the SiM (M = Li, Na, and K) Zintl clusters: a theoretical study on electronic structure and dynamic nonlinear optical properties.

Ahsin A, Qamar A, Muthu S, Vetrivelan V, Cao J, Bian W RSC Adv. 2024; 14(24):17091-17101.

PMID: 38808233 PMC: 11130639. DOI: 10.1039/d4ra02396j.


Second Harmonic Generation in Janus Transition Metal Chalcogenide Oxide Monolayers: A First-Principles Investigation.

Su P, Ye H, Sun N, Liu S, Zhang H Nanomaterials (Basel). 2023; 13(14).

PMID: 37513161 PMC: 10386494. DOI: 10.3390/nano13142150.


Deciphering the Role of Alkali Metals (Li, Na, K) Doping for Triggering Nonlinear Optical (NLO) Properties of T-Graphene Quantum Dots: Toward the Development of Giant NLO Response Materials.

Sarwar S, Yaqoob J, Khan M, Hussain R, Zulfiqar S, Anwar A ACS Omega. 2022; 7(28):24396-24414.

PMID: 35874249 PMC: 9301704. DOI: 10.1021/acsomega.2c01746.


HfS/MoTe vdW heterostructure: bandstructure and strain engineering based on first-principles calculation.

Yang X, Qin X, Luo J, Abbas N, Tang J, Li Y RSC Adv. 2022; 10(5):2615-2623.

PMID: 35496097 PMC: 9048521. DOI: 10.1039/c9ra10087c.


References
1.
Wang Q, Kalantar-Zadeh K, Kis A, Coleman J, Strano M . Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol. 2012; 7(11):699-712. DOI: 10.1038/nnano.2012.193. View

2.
Cao T, Wang G, Han W, Ye H, Zhu C, Shi J . Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat Commun. 2012; 3:887. PMC: 3621397. DOI: 10.1038/ncomms1882. View

3.
Terrones , HERNANDEZ , GROBERT , Charlier , Ajayan . New metallic allotropes of planar and tubular carbon. Phys Rev Lett. 2000; 84(8):1716-9. DOI: 10.1103/PhysRevLett.84.1716. View

4.
Liu , Wentzcovitch , Cohen . Atomic arrangement and electronic structure of BC2N. Phys Rev B Condens Matter. 1989; 39(3):1760-1765. DOI: 10.1103/physrevb.39.1760. View

5.
Kim J, Hong X, Jin C, Shi S, Chang C, Chiu M . Ultrafast generation of pseudo-magnetic field for valley excitons in WSe₂ monolayers. Science. 2014; 346(6214):1205-8. DOI: 10.1126/science.1258122. View