Pastore A, Ficaretta E, Chatterjee A, Davidson V
J Inorg Biochem. 2022; 234:111895.
PMID: 35696758
PMC: 9753554.
DOI: 10.1016/j.jinorgbio.2022.111895.
Avalos D, Sabuncu S, Mamounis K, Davidson V, Moenne-Loccoz P, Yukl E
Biochemistry. 2019; 58(6):706-713.
PMID: 30605596
PMC: 6381839.
DOI: 10.1021/acs.biochem.8b01145.
Yukl E, Davidson V
Arch Biochem Biophys. 2018; 654:40-46.
PMID: 30026025
PMC: 6098718.
DOI: 10.1016/j.abb.2018.07.012.
Kozak J, Gray H, Garza-Lopez R
J Inorg Biochem. 2017; 179:135-145.
PMID: 29222970
PMC: 7222854.
DOI: 10.1016/j.jinorgbio.2017.11.016.
Dow B, Davidson V
Biochim Biophys Acta. 2015; 1847(10):1181-6.
PMID: 26087387
PMC: 4843787.
DOI: 10.1016/j.bbabio.2015.06.012.
Use of the amicyanin signal sequence for efficient periplasmic expression in E. coli of a human antibody light chain variable domain.
Dow B, Tatulian S, Davidson V
Protein Expr Purif. 2015; 108:9-12.
PMID: 25573388
PMC: 4363176.
DOI: 10.1016/j.pep.2014.12.017.
Mechanisms for control of biological electron transfer reactions.
Williamson H, Dow B, Davidson V
Bioorg Chem. 2014; 57:213-221.
PMID: 25085775
PMC: 4285783.
DOI: 10.1016/j.bioorg.2014.06.006.
A simple method to engineer a protein-derived redox cofactor for catalysis.
Shin S, Choi M, Williamson H, Davidson V
Biochim Biophys Acta. 2014; 1837(10):1595-601.
PMID: 24858537
PMC: 4285715.
DOI: 10.1016/j.bbabio.2014.05.354.
The sole tryptophan of amicyanin enhances its thermal stability but does not influence the electronic properties of the type 1 copper site.
Dow B, Sukumar N, Matos J, Choi M, Schulte A, Tatulian S
Arch Biochem Biophys. 2014; 550-551:20-7.
PMID: 24704124
PMC: 4038936.
DOI: 10.1016/j.abb.2014.03.010.
Steady-state kinetic mechanism of LodA, a novel cysteine tryptophylquinone-dependent oxidase.
Sehanobish E, Shin S, Sanchez-Amat A, Davidson V
FEBS Lett. 2014; 588(5):752-6.
PMID: 24462691
PMC: 3972763.
DOI: 10.1016/j.febslet.2014.01.021.
Intrigues and intricacies of the biosynthetic pathways for the enzymatic quinocofactors: PQQ, TTQ, CTQ, TPQ, and LTQ.
Klinman J, Bonnot F
Chem Rev. 2013; 114(8):4343-65.
PMID: 24350630
PMC: 3999297.
DOI: 10.1021/cr400475g.
MauG, a diheme enzyme that catalyzes tryptophan tryptophylquinone biosynthesis by remote catalysis.
Shin S, Davidson V
Arch Biochem Biophys. 2013; 544:112-8.
PMID: 24144526
PMC: 3946517.
DOI: 10.1016/j.abb.2013.10.004.
Posttranslational biosynthesis of the protein-derived cofactor tryptophan tryptophylquinone.
Davidson V, Wilmot C
Annu Rev Biochem. 2013; 82:531-50.
PMID: 23746262
PMC: 4082410.
DOI: 10.1146/annurev-biochem-051110-133601.
Tryptophan tryptophylquinone biosynthesis: a radical approach to posttranslational modification.
Davidson V, Liu A
Biochim Biophys Acta. 2012; 1824(11):1299-305.
PMID: 22314272
PMC: 3432176.
DOI: 10.1016/j.bbapap.2012.01.008.
Replacement of the axial copper ligand methionine with lysine in amicyanin converts it to a zinc-binding protein that no longer binds copper.
Sukumar N, Choi M, Davidson V
J Inorg Biochem. 2011; 105(12):1638-44.
PMID: 22071089
PMC: 3233348.
DOI: 10.1016/j.jinorgbio.2011.08.002.
Proline 96 of the copper ligand loop of amicyanin regulates electron transfer from methylamine dehydrogenase by positioning other residues at the protein-protein interface.
Choi M, Sukumar N, Mathews F, Liu A, Davidson V
Biochemistry. 2011; 50(7):1265-73.
PMID: 21268585
PMC: 3079385.
DOI: 10.1021/bi101794y.
Cupredoxins--a study of how proteins may evolve to use metals for bioenergetic processes.
Choi M, Davidson V
Metallomics. 2011; 3(2):140-51.
PMID: 21258692
PMC: 6916721.
DOI: 10.1039/c0mt00061b.
Long-range electron transfer reactions between hemes of MauG and different forms of tryptophan tryptophylquinone of methylamine dehydrogenase.
Shin S, Tarboush N, Davidson V
Biochemistry. 2010; 49(27):5810-6.
PMID: 20540536
PMC: 2913433.
DOI: 10.1021/bi1004969.
A joint x-ray and neutron study on amicyanin reveals the role of protein dynamics in electron transfer.
Sukumar N, Mathews F, Langan P, Davidson V
Proc Natl Acad Sci U S A. 2010; 107(15):6817-22.
PMID: 20351252
PMC: 2872398.
DOI: 10.1073/pnas.0912672107.
Defining the role of the axial ligand of the type 1 copper site in amicyanin by replacement of methionine with leucine.
Choi M, Sukumar N, Liu A, Davidson V
Biochemistry. 2009; 48(39):9174-84.
PMID: 19715303
PMC: 2756040.
DOI: 10.1021/bi900836h.