» Articles » PMID: 29959327

Harnessing Synthetic Lethality to Predict the Response to Cancer Treatment

Abstract

While synthetic lethality (SL) holds promise in developing effective cancer therapies, SL candidates found via experimental screens often have limited translational value. Here we present a data-driven approach, ISLE (identification of clinically relevant synthetic lethality), that mines TCGA cohort to identify the most likely clinically relevant SL interactions (cSLi) from a given candidate set of lab-screened SLi. We first validate ISLE via a benchmark of large-scale drug response screens and by predicting drug efficacy in mouse xenograft models. We then experimentally test a select set of predicted cSLi via new screening experiments, validating their predicted context-specific sensitivity in hypoxic vs normoxic conditions and demonstrating cSLi's utility in predicting synergistic drug combinations. We show that cSLi can successfully predict patients' drug treatment response and provide patient stratification signatures. ISLE thus complements existing actionable mutation-based methods for precision cancer therapy, offering an opportunity to expand its scope to the whole genome.

Citing Articles

PRODE recovers essential and context-essential genes through neighborhood-informed scores.

Cantore T, Gasperini P, Bevilacqua R, Ciani Y, Sinha S, Ruppin E Genome Biol. 2025; 26(1):42.

PMID: 40022167 PMC: 11869679. DOI: 10.1186/s13059-025-03501-0.


Benchmarking machine learning methods for synthetic lethality prediction in cancer.

Feng Y, Long Y, Wang H, Ouyang Y, Li Q, Wu M Nat Commun. 2024; 15(1):9058.

PMID: 39428397 PMC: 11491473. DOI: 10.1038/s41467-024-52900-7.


Graph based recurrent network for context specific synthetic lethality prediction.

Jiang Y, Wang J, Zhang Y, Cao Z, Zhang Q, Su J Sci China Life Sci. 2024; 68(2):527-540.

PMID: 39422810 DOI: 10.1007/s11427-023-2618-y.


Synthetic lethal connectivity and graph transformer improve synthetic lethality prediction.

Fan K, Gokbag B, Tang S, Li S, Huang Y, Wang L Brief Bioinform. 2024; 25(5).

PMID: 39210507 PMC: 11361842. DOI: 10.1093/bib/bbae425.


Building a translational cancer dependency map for The Cancer Genome Atlas.

Shi X, Gekas C, Verduzco D, Petiwala S, Jeffries C, Lu C Nat Cancer. 2024; 5(8):1176-1194.

PMID: 39009815 PMC: 11358024. DOI: 10.1038/s43018-024-00789-y.


References
1.
Apaolaza I, Jose-Eneriz E, Tobalina L, Miranda E, Garate L, Agirre X . An in-silico approach to predict and exploit synthetic lethality in cancer metabolism. Nat Commun. 2017; 8(1):459. PMC: 5587678. DOI: 10.1038/s41467-017-00555-y. View

2.
Martin S, McCarthy A, Barber L, Burgess D, Parry S, Lord C . Methotrexate induces oxidative DNA damage and is selectively lethal to tumour cells with defects in the DNA mismatch repair gene MSH2. EMBO Mol Med. 2010; 1(6-7):323-37. PMC: 3378145. DOI: 10.1002/emmm.200900040. View

3.
Cline M, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C . Integration of biological networks and gene expression data using Cytoscape. Nat Protoc. 2007; 2(10):2366-82. PMC: 3685583. DOI: 10.1038/nprot.2007.324. View

4.
Marcotte R, Brown K, Suarez F, Sayad A, Karamboulas K, Krzyzanowski P . Essential gene profiles in breast, pancreatic, and ovarian cancer cells. Cancer Discov. 2012; 2(2):172-189. PMC: 5057396. DOI: 10.1158/2159-8290.CD-11-0224. View

5.
Sinha S, Thomas D, Chan S, Gao Y, Brunen D, Torabi D . Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data. Nat Commun. 2017; 8:15580. PMC: 5460027. DOI: 10.1038/ncomms15580. View