» Articles » PMID: 29942083

Leveraging Molecular Quantitative Trait Loci to Understand the Genetic Architecture of Diseases and Complex Traits

Overview
Journal Nat Genet
Specialty Genetics
Date 2018 Jun 27
PMID 29942083
Citations 98
Authors
Affiliations
Soon will be listed here.
Abstract

There is increasing evidence that many risk loci found using genome-wide association studies are molecular quantitative trait loci (QTLs). Here we introduce a new set of functional annotations based on causal posterior probabilities of fine-mapped molecular cis-QTLs, using data from the Genotype-Tissue Expression (GTEx) and BLUEPRINT consortia. We show that these annotations are more strongly enriched for heritability (5.84× for eQTLs; P = 1.19 × 10) across 41 diseases and complex traits than annotations containing all significant molecular QTLs (1.80× for expression (e)QTLs). eQTL annotations obtained by meta-analyzing all GTEx tissues generally performed best, whereas tissue-specific eQTL annotations produced stronger enrichments for blood- and brain-related diseases and traits. eQTL annotations restricted to loss-of-function intolerant genes were even more enriched for heritability (17.06×; P = 1.20 × 10). All molecular QTLs except splicing QTLs remained significantly enriched in joint analysis, indicating that each of these annotations is uniquely informative for disease and complex trait architectures.

Citing Articles

Overcoming collaboration barriers in quantitative trait loci analysis.

Zhang W, Wu X, Gong J Cell Genom. 2025; 5(2):100773.

PMID: 39947135 PMC: 11872532. DOI: 10.1016/j.xgen.2025.100773.


Single-Nucleus Atlas of Cell-Type Specific Genetic Regulation in the Human Brain.

Zeng B, Yang H, N M P, Venkatesh S, Mathur D, Auluck P Res Sq. 2024; .

PMID: 39711543 PMC: 11661307. DOI: 10.21203/rs.3.rs-5368620/v1.


Functional genomics of human skeletal development and the patterning of height heritability.

Richard D, Muthuirulan P, Young M, Yengo L, Vedantam S, Marouli E Cell. 2024; 188(1):15-32.e24.

PMID: 39549696 PMC: 11724752. DOI: 10.1016/j.cell.2024.10.040.


Powerful mapping of -genetic effects on gene expression across diverse populations reveals novel disease-critical genes.

Akamatsu K, Golzari S, Amariuta T medRxiv. 2024; .

PMID: 39399015 PMC: 11469471. DOI: 10.1101/2024.09.25.24314410.


Identifying genetic variants that influence the abundance of cell states in single-cell data.

Rumker L, Sakaue S, Reshef Y, Kang J, Yazar S, Alquicira-Hernandez J Nat Genet. 2024; 56(10):2068-2077.

PMID: 39327486 DOI: 10.1038/s41588-024-01909-1.


References
1.
Chen L, Ge B, Casale F, Vasquez L, Kwan T, Garrido-Martin D . Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells. Cell. 2016; 167(5):1398-1414.e24. PMC: 5119954. DOI: 10.1016/j.cell.2016.10.026. View

2.
Li Y, van de Geijn B, Raj A, Knowles D, Petti A, Golan D . RNA splicing is a primary link between genetic variation and disease. Science. 2016; 352(6285):600-4. PMC: 5182069. DOI: 10.1126/science.aad9417. View

3.
Veyrieras J, Kudaravalli S, Kim S, Dermitzakis E, Gilad Y, Stephens M . High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet. 2008; 4(10):e1000214. PMC: 2556086. DOI: 10.1371/journal.pgen.1000214. View

4.
Giambartolomei C, Vukcevic D, Schadt E, Franke L, Hingorani A, Wallace C . Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014; 10(5):e1004383. PMC: 4022491. DOI: 10.1371/journal.pgen.1004383. View

5.
Davis L, Yu D, Keenan C, Gamazon E, Konkashbaev A, Derks E . Partitioning the heritability of Tourette syndrome and obsessive compulsive disorder reveals differences in genetic architecture. PLoS Genet. 2013; 9(10):e1003864. PMC: 3812053. DOI: 10.1371/journal.pgen.1003864. View