» Articles » PMID: 29925258

The Molecular Basis of G Protein-Coupled Receptor Activation

Overview
Publisher Annual Reviews
Specialty Biochemistry
Date 2018 Jun 22
PMID 29925258
Citations 474
Authors
Affiliations
Soon will be listed here.
Abstract

G protein-coupled receptors (GPCRs) mediate the majority of cellular responses to external stimuli. Upon activation by a ligand, the receptor binds to a partner heterotrimeric G protein and promotes exchange of GTP for GDP, leading to dissociation of the G protein into α and βγ subunits that mediate downstream signals. GPCRs can also activate distinct signaling pathways through arrestins. Active states of GPCRs form by small rearrangements of the ligand-binding, or orthosteric, site that are amplified into larger conformational changes. Molecular understanding of the allosteric coupling between ligand binding and G protein or arrestin interaction is emerging from structures of several GPCRs crystallized in inactive and active states, spectroscopic data, and computer simulations. The coupling is loose, rather than concerted, and agonist binding does not fully stabilize the receptor in an active conformation. Distinct intermediates whose populations are shifted by ligands of different efficacies underlie the complex pharmacology of GPCRs.

Citing Articles

Finerenone Alleviates Over-Activation of Complement C5a-C5aR1 Axis of Macrophages by Regulating G Protein Subunit Alpha i2 to Improve Diabetic Nephropathy.

Li Z, Sun Z, Tang S, Zhao M, Chen M, Chang D Cells. 2025; 14(5).

PMID: 40072066 PMC: 11898422. DOI: 10.3390/cells14050337.


Role of RGS17 in cisplatin-induced cochlear inflammation and ototoxicity via caspase-3 activation.

Al Aameri R, Alanisi E, Al Sallami D, Alberts I, Tischkau S, Rybak L Front Immunol. 2025; 16:1470625.

PMID: 40061942 PMC: 11885124. DOI: 10.3389/fimmu.2025.1470625.


The Adhesion GPCR ADGRL2 engages Ga13 to Enable Epidermal Differentiation.

Yang X, He F, Porter D, Garbett K, Meyers R, Reynolds D bioRxiv. 2025; .

PMID: 40060693 PMC: 11888183. DOI: 10.1101/2025.02.19.639154.


Molecular basis of β-arrestin coupling to the metabotropic glutamate receptor mGlu3.

Wen T, Du M, Lu Y, Jia N, Lu X, Liu N Nat Chem Biol. 2025; .

PMID: 40050438 DOI: 10.1038/s41589-025-01858-8.


GPR132 regulates the function of NK cells through the Gαs/CSK/ZAP70/NF-κB signaling pathway as a potential immune checkpoint.

Hui X, Xue M, Ren Y, Chen Y, Chen X, Farooq M Sci Adv. 2025; 11(10):eadr9395.

PMID: 40043109 PMC: 11881902. DOI: 10.1126/sciadv.adr9395.


References
1.
Palczewski K, Kumasaka T, Hori T, Behnke C, Motoshima H, Fox B . Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000; 289(5480):739-45. DOI: 10.1126/science.289.5480.739. View

2.
Ghanouni P, Steenhuis J, Farrens D, Kobilka B . Agonist-induced conformational changes in the G-protein-coupling domain of the beta 2 adrenergic receptor. Proc Natl Acad Sci U S A. 2001; 98(11):5997-6002. PMC: 33412. DOI: 10.1073/pnas.101126198. View

3.
Ballesteros J, Jensen A, Liapakis G, Rasmussen S, Shi L, Gether U . Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J Biol Chem. 2001; 276(31):29171-7. DOI: 10.1074/jbc.M103747200. View

4.
Faham S, Bowie J . Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J Mol Biol. 2002; 316(1):1-6. DOI: 10.1006/jmbi.2001.5295. View

5.
Fredriksson R, Lagerstrom M, Lundin L, Schioth H . The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 2003; 63(6):1256-72. DOI: 10.1124/mol.63.6.1256. View