» Articles » PMID: 29914482

RACIPE: a Computational Tool for Modeling Gene Regulatory Circuits Using Randomization

Overview
Journal BMC Syst Biol
Publisher Biomed Central
Specialty Biology
Date 2018 Jun 20
PMID 29914482
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Background: One of the major challenges in traditional mathematical modeling of gene regulatory circuits is the insufficient knowledge of kinetic parameters. These parameters are often inferred from existing experimental data and/or educated guesses, which can be time-consuming and error-prone, especially for large networks.

Results: We present a user-friendly computational tool for the community to use our newly developed method named random circuit perturbation (RACIPE), to explore the robust dynamical features of gene regulatory circuits without the requirement of detailed kinetic parameters. Taking the network topology as the only input, RACIPE generates an ensemble of circuit models with distinct randomized parameters and uniquely identifies robust dynamical properties by statistical analysis. Here, we discuss the implementation of the software and the statistical analysis methods of RACIPE-generated data to identify robust gene expression patterns and the functions of genes and regulatory links. Finally, we apply the tool on coupled toggle-switch circuits and a published circuit of B-lymphopoiesis.

Conclusions: We expect our new computational tool to contribute to a more comprehensive and unbiased understanding of mechanisms underlying gene regulatory networks. RACIPE is a free open source software distributed under (Apache 2.0) license and can be downloaded from GitHub ( https://github.com/simonhb1990/RACIPE-1.0 ).

Citing Articles

The switch-liker's guide to plant synthetic gene circuits.

Lloyd J, Khan A, Lister R Plant J. 2025; 121(5):e70090.

PMID: 40052500 PMC: 11887007. DOI: 10.1111/tpj.70090.


Gene regulatory network inference during cell fate decisions by perturbation strategies.

Hu Q, Lu X, Xue Z, Wang R NPJ Syst Biol Appl. 2025; 11(1):23.

PMID: 40032872 PMC: 11876352. DOI: 10.1038/s41540-025-00504-2.


Endothelial Dysfunction in the Tubule Area Accelerates the Progression of Early Diabetic Kidney Disease.

Zeng W, Ying D, Chen B, Wang P Physiol Res. 2025; 73(6):1013-1024.

PMID: 39903891 PMC: 11835216.


Operating principles of interconnected feedback loops driving cell fate transitions.

Rashid M, Hegade A NPJ Syst Biol Appl. 2025; 11(1):2.

PMID: 39743534 PMC: 11693754. DOI: 10.1038/s41540-024-00483-w.


OneSC: a computational platform for recapitulating cell state transitions.

Peng D, Cahan P Bioinformatics. 2024; 40(12).

PMID: 39570626 PMC: 11630913. DOI: 10.1093/bioinformatics/btae703.


References
1.
Finney A, Hucka M . Systems biology markup language: Level 2 and beyond. Biochem Soc Trans. 2003; 31(Pt 6):1472-3. DOI: 10.1042/bst0311472. View

2.
Milo R, Itzkovitz S, Kashtan N, Chklovskii D, Alon U . Network motifs: simple building blocks of complex networks. Science. 2002; 298(5594):824-7. DOI: 10.1126/science.298.5594.824. View

3.
Roberts E, Stone J, Luthey-Schulten Z . Lattice Microbes: high-performance stochastic simulation method for the reaction-diffusion master equation. J Comput Chem. 2012; 34(3):245-55. PMC: 3762454. DOI: 10.1002/jcc.23130. View

4.
Jolly M, Jia D, Boareto M, Mani S, Pienta K, Ben-Jacob E . Coupling the modules of EMT and stemness: A tunable 'stemness window' model. Oncotarget. 2015; 6(28):25161-74. PMC: 4694822. DOI: 10.18632/oncotarget.4629. View

5.
Tyson J . Modeling the cell division cycle: cdc2 and cyclin interactions. Proc Natl Acad Sci U S A. 1991; 88(16):7328-32. PMC: 52288. DOI: 10.1073/pnas.88.16.7328. View