» Articles » PMID: 29891698

Primary Productivity Below the Seafloor at Deep-sea Hot Springs

Overview
Specialty Science
Date 2018 Jun 13
PMID 29891698
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

Below the seafloor at deep-sea hot springs, mixing of geothermal fluids with seawater supports a potentially vast microbial ecosystem. Although the identity of subseafloor microorganisms is largely known, their effect on deep-ocean biogeochemical cycles cannot be predicted without quantitative measurements of their metabolic rates and growth efficiency. Here, we report on incubations of subseafloor fluids under in situ conditions that quantitatively constrain subseafloor primary productivity, biomass standing stock, and turnover time. Single-cell-based activity measurements and 16S rRNA-gene analysis showed that dominated carbon fixation and that oxygen concentration and temperature drove niche partitioning of closely related phylotypes. Our data reveal a very active subseafloor biosphere that fixes carbon at a rate of up to 321 μg C⋅L⋅d, turns over rapidly within tens of hours, rivals the productivity of chemosynthetic symbioses above the seafloor, and significantly influences deep-ocean biogeochemical cycling.

Citing Articles

High-pressure continuous culturing: life at the extreme.

Foustoukos D, Houghton J Appl Environ Microbiol. 2025; 91(2):e0201024.

PMID: 39840974 PMC: 11837531. DOI: 10.1128/aem.02010-24.


Animal life in the shallow subseafloor crust at deep-sea hydrothermal vents.

Bright M, Gollner S, de Oliveira A, Espada-Hinojosa S, Fulford A, Hughes I Nat Commun. 2024; 15(1):8466.

PMID: 39406718 PMC: 11480316. DOI: 10.1038/s41467-024-52631-9.


Co-expression analysis reveals distinct alliances around two carbon fixation pathways in hydrothermal vent symbionts.

Mitchell J, Freedman A, Delaney J, Girguis P Nat Microbiol. 2024; 9(6):1526-1539.

PMID: 38839975 PMC: 11636981. DOI: 10.1038/s41564-024-01704-y.


Mineral-eating microorganisms at extinct hydrothermal vents.

McNichol J Nat Microbiol. 2024; 9(3):589-590.

PMID: 38429423 DOI: 10.1038/s41564-024-01622-z.


Microbial eukaryotic predation pressure and biomass at deep-sea hydrothermal vents.

Hu S, Anderson R, Pachiadaki M, Edgcomb V, Serres M, Sylva S ISME J. 2024; 18(1).

PMID: 38366040 PMC: 10939315. DOI: 10.1093/ismejo/wrae004.


References
1.
Huber J, Mark Welch D, Morrison H, Huse S, Neal P, Butterfield D . Microbial population structures in the deep marine biosphere. Science. 2007; 318(5847):97-100. DOI: 10.1126/science.1146689. View

2.
Olins H, Rogers D, Preston C, Ussler 3rd W, Pargett D, Jensen S . Co-registered Geochemistry and Metatranscriptomics Reveal Unexpected Distributions of Microbial Activity within a Hydrothermal Vent Field. Front Microbiol. 2017; 8:1042. PMC: 5468400. DOI: 10.3389/fmicb.2017.01042. View

3.
Pachiadaki M, Sintes E, Bergauer K, Brown J, Record N, Swan B . Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science. 2017; 358(6366):1046-1051. DOI: 10.1126/science.aan8260. View

4.
Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers M . Look@NanoSIMS--a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012; 14(4):1009-23. DOI: 10.1111/j.1462-2920.2011.02681.x. View

5.
Waite D, Vanwonterghem I, Rinke C, Parks D, Zhang Y, Takai K . Comparative Genomic Analysis of the Class and Proposed Reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol. 2017; 8:682. PMC: 5401914. DOI: 10.3389/fmicb.2017.00682. View