» Articles » PMID: 29888051

From Sour Grapes to Low-Hanging Fruit: A Case Study Demonstrating a Practical Strategy for Natural Language Processing Portability

Overview
Specialty Biology
Date 2018 Jun 12
PMID 29888051
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Natural Language Processing (NLP) holds potential for patient care and clinical research, but a gap exists between promise and reality. While some studies have demonstrated portability of NLP systems across multiple sites, challenges remain. Strategies to mitigate these challenges can strive for complex NLP problems using advanced methods (hard-to-reach fruit), or focus on simple NLP problems using practical methods (low-hanging fruit). This paper investigates a practical strategy for NLP portability using extraction of left ventricular ejection fraction (LVEF) as a use case. We used a tool developed at the Department of Veterans Affair (VA) to extract the LVEF values from free-text echocardiograms in the MIMIC-III database. The approach showed an accuracy of 98.4%, sensitivity of 99.4%, a positive predictive value of 98.7%, and F-score of 99.0%. This experience, in which a simple NLP solution proved highly portable with excellent performance, illustrates the point that simple NLP applications may be easier to disseminate and adapt, and in the short term may prove more useful, than complex applications.

Citing Articles

Prediction of left ventricular ejection fraction changes in heart failure patients using machine learning and electronic health records: a multi-site study.

Adekkanattu P, Rasmussen L, Pacheco J, Kabariti J, Stone D, Yu Y Sci Rep. 2023; 13(1):294.

PMID: 36609415 PMC: 9822934. DOI: 10.1038/s41598-023-27493-8.


Identifying Patients With Hypoglycemia Using Natural Language Processing: Systematic Literature Review.

Zheng Y, Dickson V, Blecker S, Ng J, Campbell Rice B, DEramo Melkus G JMIR Diabetes. 2022; 7(2):e34681.

PMID: 35576579 PMC: 9152713. DOI: 10.2196/34681.


An architecture for research computing in health to support clinical and translational investigators with electronic patient data.

Campion T, Sholle E, Pathak J, Johnson S, Leonard J, Cole C J Am Med Inform Assoc. 2021; 29(4):677-685.

PMID: 34850911 PMC: 8690260. DOI: 10.1093/jamia/ocab266.


Defining Patient-Oriented Natural Language Processing: A New Paradigm for Research and Development to Facilitate Adoption and Use by Medical Experts.

Sarker A, Al-Garadi M, Yang Y, Choi J, Quyyumi A, Martin G JMIR Med Inform. 2021; 9(9):e18471.

PMID: 34581670 PMC: 8512184. DOI: 10.2196/18471.


Using electronic health records for population health sciences: a case study to evaluate the associations between changes in left ventricular ejection fraction and the built environment.

Zhang Y, Tayarani M, AlAref S, Beecy A, Liu Y, Sholle E JAMIA Open. 2020; 3(3):386-394.

PMID: 33215073 PMC: 7660965. DOI: 10.1093/jamiaopen/ooaa038.


References
1.
Divita G, Carter M, Redd A, Zeng Q, Gupta K, Trautner B . Scaling-up NLP Pipelines to Process Large Corpora of Clinical Notes. Methods Inf Med. 2015; 54(6):548-52. DOI: 10.3414/ME14-02-0018. View

2.
Huang C, Lu Z . Community challenges in biomedical text mining over 10 years: success, failure and the future. Brief Bioinform. 2015; 17(1):132-44. PMC: 4719069. DOI: 10.1093/bib/bbv024. View

3.
Meystre S, Kim Y, Gobbel G, Matheny M, Redd A, Bray B . Congestive heart failure information extraction framework for automated treatment performance measures assessment. J Am Med Inform Assoc. 2016; 24(e1):e40-e46. PMC: 7651945. DOI: 10.1093/jamia/ocw097. View

4.
Patterson O, Freiberg M, Skanderson M, Fodeh S, Brandt C, DuVall S . Unlocking echocardiogram measurements for heart disease research through natural language processing. BMC Cardiovasc Disord. 2017; 17(1):151. PMC: 5469017. DOI: 10.1186/s12872-017-0580-8. View

5.
Kaushal R, Hripcsak G, Ascheim D, Bloom T, Campion Jr T, Caplan A . Changing the research landscape: the New York City Clinical Data Research Network. J Am Med Inform Assoc. 2014; 21(4):587-90. PMC: 4078297. DOI: 10.1136/amiajnl-2014-002764. View