» Articles » PMID: 29874056

Mapping Functional Substrate-Enzyme Interactions in the Pol β Active Site Through Chemical Biology: Structural Responses to Acidity Modification of Incoming DNTPs

Overview
Journal Biochemistry
Specialty Biochemistry
Date 2018 Jun 7
PMID 29874056
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

We report high-resolution crystal structures of DNA polymerase (pol) β in ternary complex with a panel of incoming dNTPs carrying acidity-modified 5'-triphosphate groups. These novel dNTP analogues have a variety of halomethylene substitutions replacing the bridging oxygen between Pβ and Pγ of the incoming dNTP, whereas other analogues have alkaline substitutions at the bridging oxygen. Use of these analogues allows the first systematic comparison of effects of 5'-triphosphate acidity modification on active site structures and the rate constant of DNA synthesis. These ternary complex structures with incoming dATP, dTTP, and dCTP analogues reveal the enzyme's active site is not grossly altered by the acidity modifications of the triphosphate group, yet with analogues of all three incoming dNTP bases, subtle structural differences are apparent in interactions around the nascent base pair and at the guanidinium groups of active site arginine residues. These results are important for understanding how acidity modification of the incoming dNTP's 5'-triphosphate can influence DNA polymerase activity and the significance of interactions at arginines 183 and 149 in the active site.

Citing Articles

Uridine Bisphosphonates Differentiate Phosphoglycosyl Transferase Superfamilies.

Seebald L, Haratipour P, Jacobs M, Bernstein H, Kashemirov B, McKenna C J Am Chem Soc. 2024; 146(5):3220-3229.

PMID: 38271668 PMC: 10922802. DOI: 10.1021/jacs.3c11402.


Synthesis of 8-oxo-dGTP and its β,γ-CH-, β, γ-CHF-, and β, γ-CF- analogues.

Zheng Y, Haratipour P, Kashemirov B, McKenna C Tetrahedron Lett. 2021; 67.

PMID: 33716328 PMC: 7951955. DOI: 10.1016/j.tetlet.2021.152890.


Preferential DNA Polymerase β Reverse Reaction with Imidodiphosphate.

Perera L, Beard W, Pedersen L, Shock D, Wilson S ACS Omega. 2020; 5(25):15317-15324.

PMID: 32637805 PMC: 7331038. DOI: 10.1021/acsomega.0c01345.


New Chirally Modified Bisphosphonates for Synthesis of Individual Beta,Gamma-CHX-Deoxynucleotide Diastereomers.

Haratipour P, Minard C, Nakhjiri M, Negahbani A, Kashemirov B, McKenna C Phosphorus Sulfur Silicon Relat Elem. 2020; 194(4-6):329-330.

PMID: 32377060 PMC: 7202557. DOI: 10.1080/10426507.2018.1540482.


Revealing an Internal Stabilization Deficiency in the DNA Polymerase β K289M Cancer Variant through the Combined Use of Chemical Biology and X-ray Crystallography.

Batra V, Alnajjar K, Sweasy J, McKenna C, Goodman M, Wilson S Biochemistry. 2020; 59(8):955-963.

PMID: 31999437 PMC: 7263314. DOI: 10.1021/acs.biochem.9b01072.


References
1.
Steitz T . DNA polymerases: structural diversity and common mechanisms. J Biol Chem. 1999; 274(25):17395-8. DOI: 10.1074/jbc.274.25.17395. View

2.
Bessman M, Lehman I, Simms E, Kornberg A . Enzymatic synthesis of deoxyribonucleic acid. II. General properties of the reaction. J Biol Chem. 1958; 233(1):171-7. View

3.
Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E . UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13):1605-12. DOI: 10.1002/jcc.20084. View

4.
Bebenek K, Kunkel T . Functions of DNA polymerases. Adv Protein Chem. 2004; 69:137-65. DOI: 10.1016/S0065-3233(04)69005-X. View

5.
Florian J, Goodman M, Warshel A . Computer simulations of protein functions: searching for the molecular origin of the replication fidelity of DNA polymerases. Proc Natl Acad Sci U S A. 2005; 102(19):6819-24. PMC: 1100748. DOI: 10.1073/pnas.0408173102. View